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Abstract – We proposed a scheme for the implementation of a “self-contained” quantum
refrigerator system by three rf-SQUID qubits, or rather, flux-biased phase qubits. The three qubits
play the role of the target, the refrigerator and the heat engine, respectively. We provide the
three qubits with different effective temperatures, by imposing external current noises of different
strengths. When the effective temperatures satisfy proper conditions, the target qubit could be
cooled down. We also show that the efficiency of this system approaches the Carnot upper bound.
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Introduction. – It is an interesting problem to discuss
how small we can create a cooling machine and what would
happen when quantum effects are taken into considera-
tion, e.g., whether a quantum refrigerator could exceed
the classical Carnot efficiency. In practice, it is also a great
challenge to obtain lower temperatures for better perfor-
mance of quantum devices.
A lot of work has been done, both theoretically and

experimentally [1–6], for the cooling of quantum systems.
Most proposals require external fields for excitation or
periodic control. The main mechanism is to lower down
the population of the excited states, so as to get down the
effective temperature T eff of the small system, which is
defined by treating the steady distribution of the system
as a Gibbs one even when the whole system is not in
equilibrium [2,7].
However, recently, Linden et al. proposed a “self-

contained” refrigerator system, which has a heat engine
inside to drive the whole system [8–10]. Here, “self-
contained” means that it does not require any external
source of work but only access to heat baths [10]. The
system contains three qubits, which play the role of the
target to be cooled (qubit 1), the refrigerator (qubit 2)
and the heat engine (qubit 3), respectively. The three
qubits contact independent reservoirs with different
temperatures, and they interact through

V̂ = g̃(|010⟩⟨101|+ |101⟩⟨010|)≡ v̂C + v̂H .

(a)E-mail: yxchen@zimp.zju.edu.cn

E1+E3 =E2 is also required to guarantee the energy
conservation, where Eα is the energy of each two-level
system, Hα =Eα|1⟩α⟨1|.
The effect of v̂C is to cool down qubit 1 (the target)

by qubit 2 (the refrigerator), because we can see that
v̂C flips qubit 1 to the ground state and therefore lower
down its energy. Reversely, v̂H gives the heating effect.
In order to make sure that v̂C dominates, qubit 3 (the
heat engine) is set to be hot enough. That is to say, the
population of |1⟩ of qubit 3 must be large enough, so as
to enhance the cooling process. A clearer interpretation
about this cooling mechanism would be shown below, i.e.,
when |⟨v̂C⟩|> |⟨v̂H⟩|, the refrigerator works.
The main goal of our paper is to give a feasible scheme

that could make this refrigerator realizable in the lab.
Our model is composed of three rf-SQUID qubits, or
rather, flux-biased phase qubits [11–13]. Josephson circuits
techniques are relatively sophisticated nowadays, and we
will see below that they have some unique merits to build
this refrigerator system.
One of the obstacles to build this refrigerator is that, in

experiments, it is hard to build systems with 3-body inter-
action directly. However, indirect 3-body interaction may
arise from the transmission of basic 2-body interactions,
if we impose proper resonant condition [14].
Another problem seems more difficult in the lab, i.e.,

how to maintain the three microscopic qubits in different
temperatures. In experiments, qubits are usually settled
together and separate from each other at a distance of only
several micrometers. It is hard to imagine that they have
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Fig. 1: (Color online) The design of the circuit. The part
inside the dashed line square represents three identical mutual
inductance coils. The big grey square denotes the region inside
the mixing chamber of the dilution refrigerator. Y exα is the
effective admittance of external circuits.

different temperatures. We would solve this problem by
utilizing the effective temperatures of the Nyquist current
noises brought in from external circuits.
In experiments, Josephson circuits are usually thermally

anchored to the mixing chamber in a dilution refrigera-
tor at a temperature Tmix ≈ 10mK. We also have some
control circuits outside the chamber at room tempera-
ture (see fig. 1). The effective admittances Y exα of exter-
nal circuits, which produce Ohmic heat, are the sources
of current noises. These current noises are unavoidably
brought to the qubits inside, and give rise to an effective
Nyquist temperature different from Tmix (maybe as high as
∼ 300mK [15]). We can control the strength of the current
noise of each qubit by current filters so as to provide differ-
ent temperatures as we need.
It is notable that recently Levy and Kosloff also

proposed a good idea to overcome the 3-body interaction
by replacing the cooling qubit with a classical noise
source [16], and that also makes the refrigerator easier for
implementation.

Proposal. – In this section, we show the configuration
of our proposal. After a preliminary reduction, the Hamil-
tonian of the circuit can be reduced to that of three qubits
with bipartite interactions.
The circuit design is shown in fig. 1. Flux bias for

each qubit is provided by external noisy current, and we
assume this is the main contribution to the dissipation
in our system. The three qubits interact through mutual
inductive coils overlaid together [12,13], as represented in
the dashed line square in fig. 1. For simplicity, we assume
the three mutual inductive coils are identical.
To get the quantum description of the system, we

can write down the classical equations of motion of the
circuits, then get the Lagrangian of the system, and finally,
obtain the conjugate canonical momentum Φ̃0 · Q̂α and the

Fig. 2: Illustration of the potential of the Josephson circuit.

Hamiltonian of the circuits,

Ĥcir =
3∑

α=1

[
Q̂2α
2Cα

−EαJ cos ϕ̂α+
Φ̃20
2Lα
(ϕ̂α−Φextα /Φ̃0)2

]

+
Φ̃20(LM +M)

(LM +2M)(LM −M)

⎡

⎣
3∑

α=1

1

2
ϕ̂2α−

∑

α<β

ϕ̂αϕ̂β

⎤

⎦ , (1)

where Φ̃0 =Φ0/2π and Φ0 is the flux quantum. Φextα is
the external flux imposed to the rf-SQUID loop. Qα is
the charge carried by the capacitance of the Josephson
junction, and ϕα is the superconducting phase difference
across each junction. Lα is the self-inductance of each
rf-SQUID loop. LM and M are the self and mutual
inductances of the inductive coils, as denoted in fig. 1.
We set the parameters in such a way that each qubit

works in a meta-stable cubic well approximately (see
fig. 2). Move the origin of ϕα to the stable point of
potential Uα(ϕα), and expand it around the stable point
to the third order, we can rewrite eq. (1) as

Ĥ =
3∑

α=1

Ĥα+ V̂int

=
3∑

α=1

(
p̂2α
2mα

+
mαω2αx̂

2
α

2
−λx̂3α

)
+ g
∑

α<β

x̂αx̂β . (2)

mα, ωα, λ and the coupling constant g are determined
from the parameters in eq. (1), like EαJ , L, M , etc. xα =
ϕα−ϕstaα is the translated coordinate whose stable point
is settled at the origin point.
Therefore, each circuit loop can be treated as a

harmonic oscillator plus a cubic term as the perturbation,

Ĥα =
p̂2α
2mα

+
mαω2αx̂

2
α

2
−λx̂3α.

So we have x̂α = [!/2mαωα]
1
2 (ãα+ ã†α), and ãα is the

annihilation operator of the harmonic oscillator.
Corrections from the cubic term should be made to the

energy levels and relevant eigen-states. And if we focus
on the dynamics of the lowest two levels of the oscillator
Ĥα, denoted by |0⟩α and |1⟩α hereafter, we obtain the
low-energy effective Hamiltonian for each two-level qubit
as ĤTLα =Eα|1⟩α⟨1|. Here, Eα ≃ 0.95!ωα is the modified
energy of the qubit [12].
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We can write down the Hamiltonian for the three
interacting two-level systems,

Ĥ =
3∑

α=1

Eα|1⟩α⟨1|+ g
∑

α<β

x̂αx̂β

=
∑
ĤTLα + V̂int, (3)

Effective Hamiltonian. – In this section, we start
from eq. (3) and obtain an effective Hamiltonian with 3-
body interaction, which is essential for our refrigerator as
mentioned in the introduction.
We can obtain effective indirect interactions by treating

V̂int as perturbation and imposing proper resonant condi-
tion. In order to obtain the effective Hamiltoian to describe
indirect interactions of higher order, we turn to the inter-
action picture,

UI(t) = T exp
[
− i!

∫ t

0
dτHI(τ)

]
= 1− i!

∫ t

0
dτHI(τ)

− 1!2

∫ t

0
dτ1

∫ τ1

0
dτ2HI(τ1)HI(τ2)+ · · ·

= 1− i!Hefft+ o(t
2).

Let t→∞, the effective Hamiltonian is obtained as the
linear term of the evolution operator. We can calculate
the matrix elements ⟨n|Heff |m⟩ to obtain

Heff =
∑

n,m

⟨n|Heff |m⟩ |n⟩⟨m|

= H(1)eff +H
(2)
eff + · · · . (4)

Here |n⟩= |n1n2n3⟩ is the state of the three two-level
qubits and nα = 0, 1.
In the interaction picture,

⟨n|HI(t)|m⟩= ⟨n|V̂int|m⟩ exp
[
i(En−Em)t

!

]
, (5)

where En is the eigen-energy of |n⟩ and we denote
∆ωnm = (En−Em)/! for simplicity. Put the expression of
⟨n|HI(t)|m⟩ into the integrals in UI(t) and let the upper
limit of the integral t→∞. We would see that not too
many terms can survive, because the integrals of ei∆ωt

give out terms that contain

lim
t→∞

[
ei∆ωt− 1

]
= lim
t→∞

[
−2 sin2 ∆ωt

2
+ i sin∆ωt

]

= (−∆ω2tπ+ i2π∆ω)δ(∆ω).

This is just the requirement of enery conservation. The
only terms that survive must satisfy En =Em. Remem-
ber that we impose a resonant condition E1+E3 =E2.
Therefore, the only nonzero terms are two transition ones
⟨101|Heff |010⟩= ⟨010|Heff |101⟩∗ and eight diagonal ones
⟨n|Heff |n⟩.

We can calculate these transition amplitude up to the
second order in the time-order expansion,

⟨n|H(1)eff |m⟩= ⟨n|V̂int|m⟩ ≡ V̂
nm
int ,

⟨n|H(2)eff |m⟩=
Ek ̸=E∑

k

V̂ nkint V̂
km
int

Ek−E
.

(6)

Here En =Em =E.
To carry out the calculation of V̂ nmint , we would come

across terms like ⟨nα|x̂α|nα⟩, which are not zero any more
because we have taken anharmonic corrections into |nα⟩.
Perturbation up to the second order shows that

x̂01α
/ [ !
2mαωα

] 1
2

≡ c01α = ⟨0|ãα+ ã†α|1⟩α ≃ 1+
0.096

N
,

c00α ≃
1

2
√
3Nα
, c11α ≃

3

2
√
3Nα
,

where Nα =∆Uα/!ωα and ∆Uα is the height of the cubic
potential shown in fig. 2.
After all these preparations, we can get down to do

the calculations. For the first order in UI(t), since V̂int =
g
∑
x̂αx̂β involves only two-body interaction, clearly we

have ⟨101|V̂int|010⟩= 0 while the diagonal terms survive,

Dn ≡ ⟨n|H(1)eff |n⟩= g
∑

α<β

x̂nαnαα x̂
nβnβ
β . (7)

For the second order, we only calculate the transi-
tion terms. We must calculate terms like ⟨101|x̂αx̂β |k⟩×
⟨k|x̂α′ x̂β′ |010⟩ for all |k⟩= |k1k2k3⟩ that satisfy Ek ̸=
E101. And then we get

g̃≡ ⟨101|H(2)eff |010⟩

= g2x̂101 x̂
10
2 x̂

10
3 ×
[
(x̂112 − x̂002 )− (x̂113 − x̂003 )

E1

+
(x̂111 − x̂001 )+ (x̂113 −x̂003 )

E2
+
(x̂112 −x̂002 )−(x̂111 − x̂001 )

E3

]
.

Put Dn and g̃ back into eq. (4), we arrive at the effective
Hamiltonian of the three qubits as

Heff =
∑

n

Dn|n⟩⟨n|+ g̃(|010⟩⟨101|+ |101⟩⟨010|).

We have eightDn’s here. For simplicity of the discussion
in the paper, we reorganize the diagonal terms as the
summation of 1-, 2-, 3-body operators,

Heff =
∑

α

D(α)n̂α+
∑

α<β

D(αβ)n̂αn̂β +D
(123)n̂1n̂2n̂3

+ g̃(|010⟩⟨101|+ |101⟩⟨010|). (8)
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The relation between Dn and D(...) is,

D100−D000 =D(1), D010−D000 =D(2),

D001−D000 =D(3),

D110−D000 =D(1)+D(2)+D(12),

D011−D000 =D(2)+D(3)+D(23),

D101−D000 =D(1)+D(3)+D(13),

D111−D000 =
∑
D(α)+

∑
D(αβ)+D(123).

Remember that the coupling constant g in eq. (3) comes
from the strength of inductive coupling, and it can be
tuned in experiments. We can control the properties of
the refrigerator by tuning relevant parameters.
Now we obtain the Hamiltonian of three two-level qubits

with their effective interaction in the Schrödinger picture,
from eq. (1),

HS =
∑
ĤTLα +Heff . (9)

Dissipation. – We have got the effective Hamiltonian
of the three qubits with 3-body interaction, which is essen-
tial for our refrigerator, as mentioned in the introduction.
In experiments, the current bias is not ideal but with
noises. Equivalently, current noises can be treated as heat
sources and that provides energy for the thermal mechine.
In this section, we treat the noisy qubits by master equa-
tion and give the steady solutions.

Master equation. Dissipation due to external current
noise has been well discussed in the literature [17–22].
In our system, the flux bias is provided through Φextα =
Lextα Ĩα =L

ext
α [Iα+ îα(t)]. L

ext
α comes from an external coil

that provides flux bias for each qubit, and îα(t) is the noise
that satisfies ⟨îα(t)⟩= 0. Tracing back to the single qubit
term in the Hamiltonian of the Josephson circuit eq. (1),
we can figure out that the qubits interact with the current
noise through an interaction term Hint =

∑
α γαx̂α · îα,

where γα collects the parameters.
Hereafter, we take x̂α ≃ [!/2mαωα]1/2(aα+ a†α), where
a†α ≡ |1⟩α⟨0| and aα ≡ |1⟩α⟨0| are the raising and lowering
operator of each qubit.
The total Hamiltonian of the three qubits, reservoirs

and their interactions is

HSB =HS+HB+Hint, (10)

HB is usually modeled as a collection of harmonic oscilla-
tors phenomenologically, and here we have three indepen-
dent harmonic baths.
Following the method in refs. [21,22], we write down

the master equation of the system, after a complicated
but straightforward reduction that mainly includes Born-
Markov approximation and RWA. The master equation of

the three-qubit system in the interaction picture is

∂tρ = −
i

! [Heff , ρ] +
∑

α

Dαρ=−
i

! [Heff , ρ]

+
∑

α

Γ−α
[
2aαρa

†
α− {a†αaα, ρ}+

]

+
∑

α

Γ+α
[
2a†αρaα− {aαa†α, ρ}+

]
. (11)

Here, a†α = |1⟩α⟨0| and aα = |0⟩α⟨1| are the correspond-
ing raising and lowering operators of each qubit, as we
mentioned before. Γ±α represents the absorbing and emit-
ting rate of each two-level system, respectively,

Γ±α =
γ2α

2mα!ωα

∫ ∞

−∞
dτ e∓iEατ/!⟨î(τ)î(0)⟩

=
γ2α

2mα!ωα
SαI (∓Eα/!). (12)

Here SαI (ω) is the power spectral of current noise reflecting
the dissipative impedance of the circuit [17,21],

SαI (ω) = 2!ωReY exα (ω) [Nα(ω)+ 1], (13)

where Y exα (ω) is the effective admittance of the external
circuit, and it can be measured in experiment. Y exα (ω)
produces Ohmic heat, which is actually the macroscopic
effect of Nyquist noise. And this is also the reason why
we must consider the noise temperature which is different
from Tmix in the chamber. Nα(ω) = [exp(!ω/kTα)− 1]−1
is the Planck distribution. When !ω≪ kTα, we have
SαI (ω)≃ 2kTαYα(ω), which is the Nyquist formula.
Thus, we can see the absorbing and emitting rate Γ±α

relate to the noise temperatures,

Γ−α = Γα(Nα+1), Γ+α = ΓαNα.

We must emphasize that the Tα in Nα is the Nyquist
temperature of the current noise coming from external
circuits, but not Tmix, as mentioned in introduction.
The strength of the current noise can be controlled by
filters, and that also determines the noise temperature Tα.
Thus, we can provide the three qubits with independent
reservoirs of different temperatures. We will see below that
proper control of the noise temperature Tα makes our
refrigerator work.

Steady solution. We concentrate on the equilibrium
behaviour of the system here, and especially, we want to
obtain the final steady distribution ⟨n̂α⟩ of each single
qubit, and then to get the effective temperatures.
We can obtain a closed set of eight independent

linear equations about ⟨n̂α⟩, ⟨n̂αn̂β⟩, ⟨n̂1n̂2n̂3⟩ and
⟨∆v⟩ ≡ g̃⟨a1a†2a3⟩−h.c.= ⟨v̂C⟩− ⟨v̂H⟩. By solving the
equations, the steady solution is derived as follows:

⟨n̂α⟩=
Nα

2Nα+1
+
(−1)α ⟨∆v⟩/i
2Γα(2Nα+1)

. (14)
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Here, ⟨∆v⟩ comes from the interaction Heff ,

⟨∆v⟩ = ig̃2G

X1+ g̃2(X2+X3)
(N1N3−N2−N1N2−N2N3)

≡ iξ(N1N3−N2−N1N2−N2N3), (15)

and

G = 4Γ1Γ2Γ3ΘsΘp,

X1 = 2Λ1Λ2Λ3Θp(Θ
2
D +Θ

2
s),

X2 =Θp

⎡

⎣4Λ1Λ2Λ3+
∑

α<β

ΛαΛβ(Λα+Λβ)

⎤

⎦ ,

X3 =−Γ1Γ2Λ1Λ2(Θ2s −Λ23)+Γ1Γ3Λ1Λ3(Θ2s −Λ22)

−Γ2Γ3Λ2Λ3(Θ2s −Λ21),

where Θp ≡
∏
α<β(Λα+Λβ).

Here we define Θs ≡
∑
α Λα and Λα ≡ Γα(2Nα+1).

Indeed Λα is the decay rate. The contribution of diagonal
terms is reflected in

ΘD ≡ D(1)−D(2)+D(3)+D(13)

= ⟨101|Heff |101⟩− ⟨010|Heff |010⟩. (16)

The steady solution of ⟨n̂α⟩ contains two terms, and
it is the population probability of |1⟩α. When there is no
interaction between the three qubits, i.e., g̃= 0, the second
term disappears. That means they decay into Boltzmann
distributions, respectively, due to the weak coupling with
each reservoir, as described by the first term in eq. (14).
P|0⟩α : P|1⟩α = 1 : e

−βEα . This is consistent with the results
of a single qubit in a Markovian bath [22].
With the presence of the 3-body interaction Heff ,

the population ⟨n̂α⟩ is changed, as described by the
second term in eq. (14). Correspondingly, the effective
temperatures would be changed as long as ⟨∆v⟩ ̸= 0.

Discussion. – We have got the steady solution of
⟨n̂α⟩ in eq. (14). In this section, we talk about the
physical meaning of the steady solution further to give
the cooling condition of the refrigerator. We also get the
efficiency of this thermal machine. At last, we talk about
the measurement and some constrictions in practical
experiments.

Cooling condition. We are going to discuss the physi-
cal meaning of the solution and give the cooling condition
of the refrigerator now.
When we say that we want to make the system run as a

refrigerator in order to cool down qubit 1, we have actually
implied that the initial temperature T1 is the lowest,
otherwise, it could be cooled through heat transportion.
Moreover, we must make sure ⟨∆v⟩/i > 0 so as to lower
down ⟨n̂1⟩. That means, the system is staying at lower
temperature and less likely to be excited.

We can check that each term in ξ in eq. (15) is positive.
Thus, we require that N1N3−N2−N1N2−N2N3 > 0,
and that gives the cooling condition,

(β1−β2)E1 < (β2−β3)E3,

or,
E1
E3
<
β2−β3
β1−β2

. (17)

Remember that E1+E3 =E2. As we know T1 should be
the lowest, we must have T1 <T2 <T3.
Notice that ⟨∆v⟩/i > 0 also means |⟨v̂C⟩|> |⟨v̂H⟩|. That

gives a well physical meaning that the cooling process
dominates over heating, as we mentioned in the beginning
about the cooling mechanism of this system.
The transition terms give rise to the cooling effect, while

the diagonal terms weaken the cooling effect, but would
not eliminate it, as seen from the expression of X1 and ΘD
in eq. (15). Qubit 1 can be cooled if and only if eq. (17) is
satisfied.

Reliability. We have shown that these three qubits
could work as a refrigerator under the resonant condition
E1+E3 =E2. Here we analyse the reliability when this
condition is slightly broken.
Assume we have E1+E3 =E2+ δε, we can rewrite the

Hamiltonian eq. (3) as

Ĥ ′ =
∑

α

!ωαa†αaα+
(
V̂int− δεa†2a2

)
, (18)

where !ω1,3 =E1,3, while !ω2 =E2+ δε. We can derive
the effective Hamiltonian by the method we used above
in the interaction picture of H0 =

∑
α !ωαa†αaα. After

repeating the calculation as before, we find that the
detuning term δεa†2a2 = δεn̂2 does not change our previous
result too much,

H ′eff =
∑

α

D(α)n̂α+
∑

α<β

D(αβ)n̂αn̂β +D
(123)n̂1n̂2n̂3

+ g̃(|010⟩⟨101|+ |101⟩⟨010|)− δεn̂2. (19)

When the detuning δε is too large comparing with
the coupling energy, the interaction terms in H ′eff are
suppressed and the qubits do not interact with each other
any more.
Notice that the added term can be absorbed into D(2).

Therefore, the steady solution has the same form with that
of the unperturbed case, only with D(2)→D(2)− δε. Now
the diagonal contribution becomes

Θ′D = ⟨101|Heff |101⟩− ⟨010|Heff |010⟩+ δε. (20)

When the detuning δε is quite large, ΘD→∞, that
would suppress ∆v in n̂α to zero. This is consistent with
the argument that the interaction would turn off when the
detuning is large.
On the other hand, it is amazing to notice that proper

detuning could eliminate the weakening effect of the
diagonal terms completely to zero, as long as we take
δε=D010−D101.
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Efficiency. In order to compute the cooling efficiency
of the refrigerator, we have to compare the amounts of
heat exchange of the target (qubit 1) and the heat engine
(qubit 3) with their environments. The unitary term in
the master equation eq. (11) represents the contribution
of doing works between the three qubits, and the second
dissipative one represents the heat exchange with the
environment. Therefore, we can get the heat exchange of
each qubit with their environments per unit time by

Qα =Tr[Eαn̂α · Dαρ] = (−1)α+1Eα ⟨∆v⟩/i.

Now we arrive at the interesting result that the effi-
ciency of the system is

ηQ =
Q1
Q3
=
E1
E3
<
1− T2T3
T2
T1
− 1
≡ ηQmax. (21)

Remember that T1 <T2 <T3. This is exactly the same
with the results in previous work [9]. In their work, the
authors of [9] also figure out that this is the upper bound
on the efficiency of any such engine running between three
reservoirs which extracts heat from the bath at T1 using
a supply of heat from the bath at T3.
From the results and discussion above, we can see that,

by controlling the effective Nyquist temperatures, we can
provide the three qubits with different reservoirs and make
the refrigerator work well.

Measurement. In experiments, what we should do is
to input proper noisy current to each qubit, and measure
whether each qubit is at |1⟩α after a relaxation time< 1µs.
Multiple repeated trials give ⟨n̂α⟩, and then we can get the
effective temperature of each qubit.
Each single measurement can be done as follows. The

height of the barrier ∆U can be tuned by the flux bias.
When the barrier is tuned low enough, the oscillator would
tunnel out to the next well if it was in state |1⟩α (see fig. 2),
and that causes a flux change of ∼ 1Φ0 in the qubit loop
which can be detected by a SQUID. While this would not
happen if the original state was |0⟩α. This is usually done
by imposing a current pulse ∼ 2 ns to each qubit [23], and
it is much faster than the evolution of the interaction.
Moreover, since ∆U is changed, the resonant condition is
greatly broken, and the interaction stops. This method has
been used for the tomography of entanglement [11].
We should talk about some restriction that may be

required in experiments. First, the highest temperature
T3 must not be too high comparing with the excitation
energy E3 ∼ 10GHz∼ 1K, otherwise, population of higher
energy levels must be taken into account, and we cannot
treat our system simply as a two-level system. Second, if
we greatly suppress the external noise of qubit 1 in order
to make T1 lower (< 50mK), the low-frequency 1/f noise
would dominate the dissipation. Therefore, our analysis
above based on Markovian approximation is invalid.

It is interesting that the whole system could obtain
power from noises that we usually dislike. We emphasize
that the current noises come from outside, thus they are
stable and independent from the thermal environment in
the mixing chamber. Besides, the noise sources of the
qubits are independent from each other. Otherwise, the
whole system would finally achieve thermal equilibrium
and each part has the same temperature.

Summary. – In this paper, we proposed a Josephson
circuit system to implement a quantum refrigerator. By
controlling the different strengths of the noises pouring
into the qubits, we show that the refrigerator could surely
cool down the target. The efficiency of this heat machine
is no greater than the Carnot up-bound. We believe our
proposal is realizable with the present technology. More
general case of noises, especially the 1/f type, should be
discussed in future works.
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