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Quantum correlations in topological quantum phase transitions
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We study the quantum correlations in a two-dimensional system that possesses a topological quantum phase
transition. The quantumness of two-body correlations is measured by quantum discord. We calculate both the
correlation of two local spins and that between an arbitrary spin and the rest of the lattice. It is notable that local
spins are classically correlated, while the quantum correlation is hidden in the global lattice. This is different
from other systems which are not topologically ordered. Moreover, the mutual information and global quantum
discord show critical behavior in the topological quantum phase transition.
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I. INTRODUCTION

Topological phase is a new kind of order that cannot be
described by symmetry-breaking theory [1]. A typical example
is the quantum Hall system, which exhibits a lot of amazing
properties, such as topological degeneracy and fractional
statistical behaviors. Especially, the property of topological
protection may lead to a new way of performing quantum
computation [2].

Different from the quantum Hall system, the Kitaev toric
code model is an exactly solvable spin lattice model that is
topologically ordered [3]. The system is immune to small
perturbations. The breaking down of the topological phase
happens through a quantum phase transition [4]. A lot has
been studied about the topological quantum phase transition,
especially about the toric code model in the presence of a
magnetic field [5–9].

Concepts of quantum information have been applied in the
study of quantum phase transition, such as entanglement and
fidelity [10,11]. Here, we are interested in the correlations in
the topological phase, because the magic power of quantum
computation is rooted in the strange nonclassical correlations.

Entanglement is the most important nonclassical correlation
in quantum-information processing, such as quantum telepor-
tation [12]. However, some separable states also have proper-
ties that are not achievable by classical methods [13]. Recent
results suggest that these correlations may also take effect
in quantum computation. The classification of nonclassical
correlations and their effects still remain unclear [14].

Quantum discord is a measurement of the “quantumness”
of a pairwise correlation [13,15]. It is based on the fact
that the mutual information has two equivalent definitions in
the classical world, while their quantum generations are not
equivalent. Quantum discord is defined as the minimum of
their difference and measures how “quantum” the correlation
is. Besides entangled states, some separable states also have
nonzero quantum discord, which means they are nonclassical.
Recent studies suggest that quantum discord, but not entangle-
ment, may be responsible for mixed-state computation [16,17].

Quantum discord in quantum phase transition has been
studied in one-dimensional (1D) systems, such as the XXZ
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chain and some other Z2-symmetric 1D spin models [18,19].
During the phase transition, quantum discord shows critical
behavior at the phase transition point. In a study in the thermal
Heisenberg system, quantum discord also demonstrated some
different behavior from entanglement [20].

In this paper, we study the correlations in the Castelnovo-
Chamon model [21], which is a two-dimensional (2D) system
that shows a quantum phase transition from a topologically
ordered phase to a magnetized one. It is a deformation of
the toric code model and possesses higher symmetry than the
1D models mentioned above. Both local spin-spin correlation
and that between a spin and the rest of the whole lattice are
calculated. It is notable that in such a topologically ordered
system, quantum discord of local spins is always zero in both
phases, which means the local correlations are completely
classical. However, the correlation between a local spin and
the rest of the lattice behaves more like a pairwise entangled
pure state, and the quantum discord signals the critical point.
This is different from previous studies in other models [18–20].
Our results shows that in a topologically ordered system, the
quantum correlation is hidden in the lattice globally by the
high symmetry of the system.

Besides, we calculated the mutual information of the cor-
relations in the system. It was pointed out that in topologically
ordered systems, in which there is no local order parameter,
the topological quantum phase transition can be signaled by
local properties like the reduced fidelity of two spins, and it is
even more sensitive than the global fidelity [22,23]. Here, we
calculate the mutual information, both of the global correlation
and that of two local spins. We see that the mutual information
could also characterize the critical behavior.

The paper is organized as follows. In Sec. II, we briefly
review the concept of quantum discord and its basic properties.
In Sec. III, we introduce the Castelnovo-Chamon model. We
give the ground state and explain how it can be mapped to the
classical Ising model. In Sec. IV, we calculate the quantum
discord of local spin-spin correlations and also that of a local
spin with the rest of the whole lattice. Our conclusion is drawn
in Sec. V.

II. QUANTUM DISCORD

Quantum discord can be used as a measure of the quan-
tumness of a pairwise correlation [13]. In this part, we briefly
introduce this concept.
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Information is the average amount of uncertainty that can
be eliminated after we get a measurement result. Mutual
information I(A : B) describes the information about A we
gain after the measurement of B, or rather, the information
that A and B have in common [24]. In classical world, there
are two equivalent definitions of mutual information:

I(A : B) = H (A) + H (B) − H (A,B),
J (A : B) = H (A) − H (A|B),

with the Shannon entropy H (·) = −∑
i pi log2 pi . H (A|B) is

the conditional entropy, which is a measure of how uncertain
we are about A, on average, when B is known. The Bayes
law tells us that p(ai, bj ) = p(ai |bj )p(bj ) = p(bj |ai)p(ai),
where p(ai |bj ) is the conditional probability that describes the
probability to get ai when we know the value of B is bj . That
guarantees the equivalence of the two definitions above.

However, things are different when we generalize the
concepts to the quantum world. We can get the quantum
version of I(A : B) easily by replacing H with von Neu-
mann entropy S(ρ) = −tr(ρ log2 ρ). While the concept of
conditional entropy in fact implicitly calls for a measurement
of B. To get the corresponding J (A : B), we have to
choose a set of one-dimensional projectors {�̂B

i } to imply
projective measurements on the system B. The state of
the system after measurement is ρi = �̂B

i ρAB�̂B
i /pi , where

pi = tr(�̂B
i ρAB�̂B

i ). With the knowledge we gain after the
measurement, we get

J
(
A|{�̂B

i

}) = S(ρA) − S
(
ρAB

∣∣{�̂B
i

})
= S(ρA) −

∑
i

piS(ρi). (1)

The value of J (A|{�̂B
i }) depends on the choice of {�̂B

i }, i.e.,
how we measure B, and therefore it may not be equal to I(A :
B) any more. Quantum discord is defined as the minimum of
their difference,

D(ρ) = min
[
I(A : B) − J

(
A

∣∣{�̂B
i

})]
. (2)

J (A|{�̂B
i }) describes the amount of information of A

achievable by projective measurements on B. It can be proved
that D(ρ) � 0. From the derivation above, we see that the
quantum discord of classical correlations should be zero. We
can use quantum discord as a measure of the “quantumness”
of a two-body correlation.

The quantum discord of states that contain entanglement is
obviously nonzero. However, it should be emphasized that
not all separable states are classical under the definition
of quantum discord. A simple example is ρ = (|00〉〈00| +
| + +〉〈+ + |)/2, where |+〉 = (|0〉 + |1〉)/√2. The quantum
discord is nonzero. The information inside the state cannot be
fully extracted just by local projective measurements.

However, if there exists a set of 1D projectors {�̃B
i } such

that ρAB can be written in the form of

ρAB =
∑

piρ
A
i ⊗ �̃B

i , (3)

then ρB = ∑
pi�̃

B
i , and we can get

J
(
ρAB

∣∣{�̃i
B

}) = S(A) −
∑

piS
(
ρA

i

)
= S(A) −

∑
piλ

i
k log2 λi

k

= S(A) + S(B) − S(AB) = I(ρAB),

where λi
k is an eigenvalue of ρA

i . That is to say, when
ρAB has the form of Eq. (3), the projective measurements
{�̃B

i } do not destroy the information of ρAB , therefore, the
mutual information J which is gained after the measurements
achieves the maximum I, and the quantum discord is zero. We
believe this is also a necessary condition.

III. CASTELNOVO-CHAMON MODEL

Castelnovo and Chamon proposed a model that shows
topological quantum phase transition [21]. It is a deformation
of the Kitaev toric code model. The Hamiltonian is

H = −λ0

∑
p

Bp − λ1

∑
s

As + λ1

∑
s

exp

(
−β

∑
i∈s

σ̂ z
i

)
,

(4)
where λ0,1 > 0, As = ∏

i∈s σ̂ x
i and Bp = ∏

i∈p σ̂ z
i are the star

and plaquette operators in the toric code model, respectively.
β is a coupling constant. The star operator As acts on the four
spins around the vertex s, while the plaquette operator Bp acts
on the four spins on the edges of the plaquette q, as shown
in Fig. 1. We consider the problem under the torus boundary
condition.

The ground state can be written down analytically. We
give the state in the topological sector that contains the fully
magnetized state |0〉 = |↑ ↑↑ · · · ↑〉 as

|g.s.(β)〉 = Z(β)−
1
2

∑
g∈G

exp

[
β

∑
i

σ z
i (g)/2

]
g|0〉, (5)

with Z(β) = ∑
g∈G exp[β

∑
i σ

z
i (g)]. G is the Abelian group

generated by the star operators {As},

G =
{

g|g =
∏

s

Ans

s , ns = 0, 1

}
, (6)

FIG. 1. (Color online). Demonstration of the model. Spins lie on
the edges (like i, i ′, i ′′). The nearest spins i, i ′ become next-nearest in
the dual lattice (the dashed line). The red plaquette and the blue cross
represent the plaquette and star operators. The red heavy line across
the lattices represents a product of σ z

i along the nontrivial loop on a
torus. The system is invariant under this transformation.
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where the product contains terms generated from all the
star operators. So g|0〉 contains separable spins taking the
form like |011110 · · · 0〉, and we can denote each g|0〉 by a
corresponding binary number as |x〉 (as what we do in the
following). σ z

i (g) is the value of spin at site i in state g|0〉. The
sum in the exponential term in fact counts the total magnetic
polarization of g|0〉.

It may not be obvious to get Eq. (5) directly. We can just put
it back into Eq. (4) and it can be easily checked. When β = 0,

the model reduces to the toric code model. When β → ∞, the
ground state becomes the fully magnetized reference state |0〉.
At βc = (1/2) ln(

√
2 + 1), there is a second-order topological

quantum phase transition, according to the study of topological
entropy [21] and fidelity [22,23] in this model.

Furthermore, the value of σ z
i (g) (note that there is no hat, it

is just an integer number relating to g) is actually determined
by whether the two ends (s and s ′ in Fig. 1) of the ith edge
are acted by As(s ′) or not. As A2

s = 1, elements of G can be
represented as a configuration of {θs}, where θs = +1 means
As acts on vertex s, while θs = −1 means not. So we get
σ z

i (g) = θsθs ′ . The normalizer in the ground state Eq. (5) is

Z(β) =
∑
{θs }

exp

⎡
⎣β

∑
〈ss ′〉

θsθs ′

⎤
⎦ , (7)

which is just the canonical partition function of the 2D classical
Ising model without an external field, with the Hamiltonian
HIsing = −∑

〈ss ′〉 θsθs ′ .
As an example, we can calculate the correlation function as

〈g.s.|σ̂ z
i |g.s.〉 =

∑
g∈G

σ z
i (g) exp

⎡
⎣β

∑
j

σ z
j (g)

⎤
⎦

=
∑
{θs }

θsθs ′ exp

⎡
⎣β

∑
〈ss ′〉

θsθs ′

⎤
⎦

= 〈θ0,0θ0,1〉Ising

= 1

2π

∫ 2π

0
dθ

[
(1 − α1e

iθ )(1 − α2e
−iθ )

(1 − α1e−iθ )(1 − α2eiθ )

] 1
2

,

(8)

where α1 = e−2β tanh β and α1 = e−2β/ tanh β. Thus, we can
see that the model can be mapped to the Ising model, which is
exactly solvable [25].

IV. CORRELATIONS IN THE LATTICE

In this section, we discuss the correlations in the lattices.
Both the local spin-spin correlations and the global correlation
between a single spin and the rest of the lattice are considered.
We find that the local correlations are classical, and the
quantum correlation emerges only when considering the whole
lattice. In both cases, the mutual information signals the critical
behavior.

A. Local spin-spin correlation

First, let us look at the correlation of two local spins. We
need to get the reduced density matrix of two spins. The set

{ 1
2 σ̂

µ

i σ̂ ν
j }, where µ, ν take the values 0, 1, 2, 3 and σ̂ 0 = 1,

contains 16 matrices, and they form a complete orthonormal
basis for 4 × 4 Hermitian matrices under the Hilbert-Schmidt
inner product (A,B)H−S ≡ tr(A†B) [24]. Conveniently, the
reduced density matrix can be written as an expansion in the
basis { 1

2 σ̂
µ

i σ̂ ν
j } [22,26],

ρ̂ij = 1

4

3∑
µ,ν=0

〈
σ̂

µ

i σ̂ ν
j

〉
σ̂

µ

i σ̂ ν
j , (9)

where 〈σ̂ µ

i σ̂ ν
j 〉 = Tr(ρ̂g.s.σ̂

µ

i σ̂ ν
j ) = tr(ρ̂ij σ̂

µ

i σ̂ ν
j ) is the inner

product of ρ̂ij and σ̂
µ

i σ̂ ν
j .

Furthermore, most terms above can be eliminated because
of the symmetry of the system. Draw a closed loop through the
torus arbitrarily (as the red line shown in Fig. 1), and define a
corresponding transformation P̂ = ∏

line σ̂ z
i . The Hamiltonian

(4) is invariant under the transformation P̂ . Also, ρ̂ij should
commute with any P̂ . Only the terms 1, σ̂ z

i , σ̂ z
j and σ̂ z

i σ̂ z
j could

exist, so we get

ρ̂ij = 1
4

[
1 + 〈

σ̂ z
i

〉(
σ̂ z

i + σ̂ z
j

) + 〈
σ̂ z

i σ̂ z
j

〉
σ̂ z

i σ̂ z
j

]
= 1

4

[(
1 + 〈

σ z
i

〉) + (〈
σ z

i

〉 + 〈
σ z

i σ z
j

〉)
σ z

i

] ⊗ �0

+ 1
4

[(
1 − 〈

σ z
i

〉) + (〈
σ z

i

〉 − 〈
σ z

i σ z
j

〉)
σ z

i

] ⊗ �1. (10)

The density matrix is diagonal. It can be written in the form
of ρ̂ij = ∑

pnρn ⊗ �n. According to what we have seen in
Sec. II, the quantum discord of ρ̂ij is zero. That means the
correlations between any two local spins are always classical.
This is quite different from other studies of quantum discord
in the phase transition of 1D systems that are not topologically
ordered [18–20], where the quantum discord of local spins
shows different behavior in different phase areas and exhibits
critical behavior.

This stems from the high symmetry of the topologically
ordered system. This 2D system exhibits higher symmetry
than other 1D Z2-symmetric models [18,19]. The system is
conserved under the transformation of P̂ along any closed
loop, which eliminates all nondiagonal terms. So the quantum
discord is zero in the topological phase area. It was stated in
Ref. [2] that in a topologically ordered system, all observable
properties should be invariant under smooth deformations
(diffeomorphisms) of the space-time manifold, which means
the only local operator that has nonvanishing correlation
functions is the identity. For example, in the toric code model,
only identity exists in the expansion Eq. (9) and ρ̂ij ∼ 1 ⊗ 1,
which means local spins are even uncorrelated. While the other
phase area, where β → ∞, is a fully magnetized phase, which
obviously only contains classical information of probability.
This is why local correlations are classical in both phases.

Besides, it was stated that a topological quantum phase
transition cannot be described by the symmetry breaking of a
local order parameter and involves a global rearrangement
of nonlocal correlations [1]. However, recent research has
indicated that some concepts in quantum information theory,
even though they describe local properties, still signal the
singularity in topological quantum phase transition [5,21,22].
Reduced fidelity and local magnetization were studied in the
Castelnovo-Chamon model and the Kitaev toric code in a
magnetic field, and they exhibit the critical behavior of the
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FIG. 2. Mutual information of two nearest spins σ z
i σ z

i′′ (solid line)
and σ z

i σ z
i′ (dashed line) as shown in Fig. 1. Critical change happens

at βc = (1/2) ln(
√

2 + 1), which is in accord with previous studies.
The quantum discord of the two spins is always zero.

topological quantum phase transition. We calculate the mutual
information I of the two nearest spins, which is also a local
property (Fig. 2). The correlations in ρ̂ij can be evaluated
with the help of the mapping to Ising model, as mentioned
in Sec. III. We can see that the mutual information of both
nearest and next-nearest spins (in the dual lattice) exhibits
critical behavior. But the next-nearest mutual information is
much less sensitive.

B. Global correlation in the lattice

As we have seen in the last section, the correlations between
local spins are completely classical in both phases. In this
section, we calculate the correlation between a local spin and
the rest of the whole lattice. As β increases, the system turns
to the magnetic phase, and the correlation between a local spin
and the lattice becomes more and more “classical.”

To calculate the correlation of an arbitrary spin denoted by
k with the lattice, we treat the rest of the lattice as a whole
system. We can always rewrite the ground state as

|g.s.(β)〉 =
∑

x

ax |x〉|0〉k +
∑

y

by |y〉|1〉k

= a|X〉|0〉k + b|Y 〉|1〉k, (11)

where |X〉 = ∑
x ax |x〉 and |Y 〉 = ∑

y by |y〉. The x, y in the
basis vectors are the binary number representation of g|0〉
excluding the kth spin, as mentioned in Sec. III. Notice that
g|0〉 and g′|0〉(g �= g′) have at least four different spins. So
we are sure that |X〉 and |Y 〉 have no term in common, and
〈X|Y 〉 = 0. Therefore, we can treat |g.s.(β)〉 as a simple 2 × 2
entangled state. In this case, the quantum discord is equal to
the entanglement of entropy [27,28],

D(ρAB) = I(A : B)/2 = S(A) = S(B). (12)

We calculate it in detail. The coefficients ax, by are
superposition coefficients in Eq. (5) correspondingly. So the
value of a2(b2) is just the Ising partition function with a
constraint that σ z

k = 1(−1), in other words, θrθr ′ = 1(−1),

where r and r ′ are the nearest vertices of spin k.

a2 =
∑

{θs },θr θr′ =1

exp

⎡
⎣β

∑
〈θsθs′ 〉

θsθs ′

⎤
⎦/

Z(β),

(13)

b2 =
∑

{θs },θr θr′ =−1

exp

⎡
⎣β

∑
〈θsθs′ 〉

θsθs ′

⎤
⎦ /

Z(β).

Notice that a2 − b2 is just the nearest correlation function
〈θ0,0θ0,1〉.

〈θ0,0θ0,1〉 =
⎡
⎣ ∑

θr θr′ =1

eβ
∑

θsθs′ −
∑

θr θr′ =−1

eβ
∑

θsθs′

⎤
⎦ /

Z(β)

= a2 − b2. (14)

Together with a2 + b2 = 1, we can get the value of a, b.
Now we calculate the quantum discord of the ground state

in Eq. (11), ρ̂g.s. = |g.s.(β)〉〈g.s.(β)|. Instead of doing all the
possible projective measurements to the spin, equivalently, we
implement all possible local unitary operations on spin k and
then measure it by {|0〉〈0|, |1〉〈1|}.

�0U
†ρ̂g.s.U�0 =

(
a2 cos2 θ

2
1
2ab sin θeiφ

1
2ab sin θe−iφ b2 sin2 θ

2

)
⊗ |0〉〈0|

= ρ̃0 ⊗ �0,

�1U
†ρ̂g.s.U�1 =

(
a2 sin2 θ

2 − 1
2ab sin θeiφ

− 1
2ab sin θe−iφ b2 cos2 θ

2

)
⊗|1〉〈1|

= ρ̃1 ⊗ �1, (15)

where

U =
(

cos θ
2 sin θ

2 e−iφ

sin θ
2 eiφ cos θ

2

)
. (16)

The unnormalized post-measurement density matrices ρ̃0

and ρ̃1 in Eq. (15) both have only one nonzero eigenvalue,
respectively, i.e., λk = [a2 + b2 + (−1)k(a2 − b2) cos θ ]/2,
where k = 0, 1. That means the conditional information about
the lattice after the measurement of a local spin is zero,

S(ρg.s.|{�i}) =
∑
k=0,1

λkS(ρ̃k/λk) = 0. (17)

Therefore,J is always equal to the entanglement of entropy
S, no matter what measurement we impose on the local spin.
So the quantum discord is equal to S,

D(ρg.s.) = J = I/2 = S

= −a2 log2 a2 − b2 log2 b2, (18)

where

a2 = (1 + 〈θ0,0θ0,1〉)/2,
(19)

b2 = (1 − 〈θ0,0θ0,1〉)/2.

The correlation function 〈θ0,0θ0,1〉 has an explicit analytic
form, Eq. (8) [25].
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FIG. 3. Global correlations between a local spin and the rest of
the whole lattice. Here, the quantum discord (solid line) is equal to the
entropy of entanglement, and just one-half of the mutual information
(dashed line) of the pairwise system. Both the quantum discord and
the mutual information show critical change at the phase transition
point.

The quantum discord and mutual information of the global
correlation is shown in Fig. 3. Comparing it with that of local
correlation, the quantum discord is not zero, which means the
quantum correlation exists in the lattice globally. It also signals
the critical point in the phase transition, just like the mutual
information. With the increase of β, the quantum discord
decreases to zero, which means the global quantum correlation
disappears gradually.

In summary, the quantum correlation hides in the global
lattice. We can only get classical correlations between local
spins. All these results of correlations seem to suggest that the
ground state of the topologically ordered system behaves as a
generalized GHZ state. The quantum information is encoded

in the lattice globally, and so it can be protected better than in
other systems.

V. CONCLUSION

In this paper, we studied the correlations in the Castelnovo-
Chamon model. Both local and global correlations were
studied. The correlations were measured by quantum discord.
As we have seen, local spins are classically correlated,
although the Hamiltonian is very complicated, whereas the
quantum correlation is hidden in the lattice globally. This is
quite peculiar compared to previous studies. We found that
these distinctive characters result from the high symmetry of
the 2D topologically ordered system. The spins along any
loop on the torus are Z2 symmetric. This strict constraint
clears the quantum correlations between local spins. Only
global quantum correlation exists, just like a generalized GHZ
state. We believe that this is a generic property in topological
quantum phase transition because of the particular symmetry
of topologically order systems, as mentioned previously.

Moreover, we calculated the mutual information of the two
nearest spins, which signals critical behavior of the topological
quantum phase transition. Similar to a previous study of
fidelity, mutual information also works as a local probe of
the topologically ordered phase, although topological order
cannot be described by the symmetry-breaking of local order
parameter. More study is required of correlations in other more
realistic systems.
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