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Entropy dynamics of a dephasing model in a squeezed thermal bath
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We study the entropy dynamics of a dephasing model, where a two-level system (TLS) is coupled with a
squeezed thermal bath via a nondemolition interaction. This model is exactly solvable, and the time-dependent
states of both the TLS and its bath can be obtained exactly. Based on these states, we calculate the entropy
dynamics of both the TLS and the bath, and find that the dephasing rate of the system relies on the squeezing
phase of the bath. In the zero-temperature and high-temperature limits, both the system and bath entropy increase
monotonically in the coarse-grained time scale. Moreover, we find that the dephasing rate of the system relies on
the squeezing phase of the bath, and this phase dependence cannot be precisely derived from the Born-Markovian
approximation which is widely adopted in open quantum systems.
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I. INTRODUCTION

When an open quantum system is coupled with a thermal
reservoir, it turns out that the classical thermodynamics re-
lations also apply [1–4]. However, current technology makes
it possible to create a nonthermal environment for quantum
systems; for example, quantum coherence or squeezing could
also exist in the reservoir, and makes it a nonthermal bath
[5–10]. In these cases, it is permissible that the conventional
thermodynamics relations do not hold. Even more strikingly, a
quantum heat engine working with such a nonthermal quantum
bath could seemingly exceed the Carnot bound [5–7,9].

This is because indeed conventional thermodynamics only
concerns thermal equilibrium reservoirs; particularly, the ther-
mal entropy dS = đQ/T is only defined for the equilibrium
state. For nonthermal baths, the conventional entropy relations
should be reconsidered. There are some different approaches
dealing with such problems. For example, some external work
should be considered to maintain the quantum coherence in
the bath [3,4], excess heat should be taken into account [11],
or the heat should be redefined with the help of a passive state
[10,12].

Recently, it was noticed that the entropy production in
conventional thermodynamics can be understood as the the
correlation generation between an open quantum system and
its thermal reservoir [13–22]. For example, for a thermal state
ρB(0) = Z−1 exp[−ĤB/T ],1 assuming the bath state does not
change too much from the initial state, the von Neumann
entropy of the bath state gives ṠB = −tr[ρ̇B(t) ln ρB(t)] ≈
−tr[ρ̇B(t) ln ρB(0)] = d

dt
〈ĤB〉/T [19,23]. If all the bath energy

loss is gained by the system, δ〈ĤB〉 ≈ −δ〈ĤS〉, then it turns
out that the informational entropy change of the bath ṠB is just
equivalent to the thermal entropy đQ/T of the system.

*lishengwen@tamu.edu
1ĤS (B) is the Hamiltonian of the system or bath, and T is the

temperature.

More importantly, in squeezed thermal baths, the con-
ventional thermal entropy dS = đQ/T does not apply [6].
But it turns out that the system-bath (S-B) correlation still
increases monotonically [19]. Therefore, it is worthwhile
to study the entropy dynamics of both the system and
its bath in more examples, especially the exactly solvable
models.

In this paper, we study the entropy dynamics in a de-
phasing model, where a two-level system (TLS) interacts
with a squeezed thermal bath via nondemolition coupling.
This model is well adopted to describe physical systems
such as the exciton-phonon interaction, molecular oscillation,
and photosynthesis process [24–26]. This model is exactly
solvable, and plenty of studies have been done considering
that the bath is a thermal equilibrium state [27–29]. Here we
consider that the bath starts from a squeezed thermal state
[30] and study the dynamics of both the system and the bath,
especially their entropy.

We obtain the exact evolution of both the system and
bath states, and find that both the system and bath entropy
SS,B increase monotonically. Moreover, we find that the de-
phasing rate of the system relies on the squeezing phase θ

of the bath. Particularly, in the high-temperature limit, the
system dephasing process is Markovian, and the quantum
coherence decays exponentially, with the dephasing rate κ =
2λT [cosh 2r − ln 4

π
sinh 2r sin δθ ], where r is the squeezing

strength, λ is a unitless number characterizing the S-B coupling
strength, and δθ is the phase difference between the squeezing
phase θ relative to the phase of the coupling strength. We also
notice that this dephasing rate κ cannot be precisely obtained
from the Born-Markovian approximation widely adopted in
open quantum systems.

We arrange the paper as follows: in Sec. II, we introduce
the dephasing model, and show how to get the exact evolution
operator; in Sec. III, we study the dynamics of the system and
its entropy, and discuss the cases of zero-temperature and high-
temperature limits; in Sec. IV, we study the bath dynamics,
and discuss how to calculate the bath entropy approximately;
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finally we draw our summary in Sec. V. Some of the calculation
details are presented in Appendices.

II. DEPHASING MODEL IN A SQUEEZED BATH

Here we first introduce the dephasing model, which is
composed of a TLS (ĤS = 1

2�0σ̂
z) coupled with a boson bath

(ĤB = ∑
k ωkb̂

†
kb̂k) [27–29]. The system-bath interaction is

described by the following nondemolition Hamiltonian,

V̂SB = σ̂ z ·
[∑

k

(gkb̂k + g∗
k b̂

†
k)

]
, (1)

where σ̂ z = |e〉〈e| − |g〉〈g|, and |e〉, |g〉 are the excited and
ground states.

Notice that [ĤS, V̂SB] = 0; thus the system energy is always
conserved, and the populations pe,g on |e,g〉 do not change with
time. But the bath energy is not conserved since [ĤB, V̂SB] �= 0.
Therefore, unlike the discussions in conventional thermody-
namics, this open system can never exchange energy with its
thermal reservoir [31,32]. But it is still meaningful to discuss
the information and correlation exchange between the system
and the bath [19,26], as we will do below.

The evolution behavior of the total S-B system is exactly
solvable [27–29]. In the interaction picture of ĤS + ĤB, it
turns out that the evolution operator can be written down as
a separable form UI (t) = |e〉〈e| ⊗ Ue + |g〉〈g| ⊗ Ug , where

Ue =
∏
k

D̂
+
k , Ug =

∏
k

D̂
−
k ,

D̂
±
k := exp{±[αk(t)b†k − α∗

k (t)bk]}. (2)

Notice that Ue,g are both products of D̂
±
k , where D̂

±
k is a

displacement operator for mode b̂k , and we denote

αk(t) := μk(1 − eiωkt ), μk := gk/ωk (3)

for the amount of displacement (see also the derivation in
Appendix A).

With this evolution operator, we can obtain the exact
state ρSB(t) at any time starting from ρSB(0) = ρS(0) ⊗ ρB(0)
(hereafter all the density matrices are in the interaction picture).
Plenty of studies have been done considering the initial state
of the bath as a thermal equilibrium state [27,33,34]. In this
paper we study the case in which the initial state of the boson
bath is a squeezed thermal state [30]

ρB(0) = ŜρthŜ†, ρth = 1

Z
e− 1

T
ĤB , (4)

where T is the temperature for the thermal state ρth, Z is the
normalization constant, Ŝ = ∏

k ŝk is the squeezing operator
for the boson bath, and ŝk is the squeezing operator for the b̂k

mode:

ŝk = exp
[

1
2ξ ∗

k b̂2
k − 1

2ξk(b̂†k)2
]
, ξk = rke

iθk (rk � 0). (5)

Here rk and θk indicate the squeezing strength and phase,
respectively.

III. SYSTEM DYNAMICS

In this section, we study the dynamics of the open system
ρS(t) = trB[UI (t) ρSB(0) U

†
I (t)]. Since the populations pe,g on

|e,g〉 do not change with time, the density matrix of the open
system ρS(t) can be written as

ρS(t) =
[

pe ρege
−(t)

ρgee
−(t) pg

]
. (6)

The time-dependent behavior of the off-diagonal terms shows
as

e−(t) = trB[Ue ρB(0) U †
g ]

= trB

(
ρB(0) exp

{
2

∑
k

[αk(t)b̂†k − α∗
k (t)b̂k]

})
. (7)

If the decay factor (t) linearly depends on t , it means the
quantum coherence terms decay exponentially and that is a
Markovian process [27,35,36].

Notice that the above expression for e−(t) is just the charac-
teristic function for the Wigner representation of ρB(0), which
is a squeezed thermal state of all bath modes [28,35,37,38].
Thus we obtain

(t) =
∑

k

1

2
|γk(t)|2 coth

ωk

2T
, (8)

where γk(t) := 2αk(t) cosh rk + 2α∗
k (t)eiθk sinh rk . Substitut-

ing αk(t) := gk

ωk
(1 − eiωkt ) into the above expression, the decay

factor becomes

(t) =
∑

k

4|gk|2
ω2

k

(1 − cos ωkt) coth
ωk

2T
[cosh 2rk

− sinh 2rk cos(ωkt − �θk)], (9)

where �θk := θk − 2φk is the phase difference between the
squeezing phase θk relative to the phase of the coupling strength
gk (gk = |gk|eiφk , φk := arg[gk]).

Now we introduce a coupling spectral density J (ω) :=
2π

∑
k |gk|2 δ(ω − ωk) [27,39]; then the above summation

can be written as an integral for continuous bath modes
(considering that rk = r , �θk = δθ are constants):

(t) =
∫ ∞

0

dω

2π
4J (ω) coth

ω

2T
· 1 − cos ωt

ω2

× [cosh 2r − sinh 2r cos(ωt − δθ )]. (10)

Here we adopt the Ohmic coupling spectral density with
an exponential cutoff (with cutoff frequency �c), i.e., J (ω) =
λω e−ω/�c , which could lead to a Markovian process in many
cases [27,35,40]. Here λ is a unitless number indicating the
coupling strength.

A. Zero-temperature case

When the temperature T → 0, we have coth ω
2T

→ 1. In
this case, the initial state of the bath is a pure state squeezed
from the vacuum. The decay factor of the open system can be
integrated out, and that is

(t) = λ

π
[At cosh 2r − sinh 2r (Bt cos δθ + Ct sin δθ )],

(11)
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FIG. 1. The time dependence of the coefficients in zero tempera-
ture [Eq. (12)] (a) At , (b) Bt , (c) Ct , (d) At ± Bt , At ± Ct , and (e), (f)
At − (Bt cos δθ + Ct sin δθ ).

where we denote (τ := �ct)

At = ln[1 + τ 2], Bt = ln
[1 + 4τ 2]

1
2

1 + τ 2
,

Ct = 2 tan−1 τ − tan−1 2τ. (12)

It is simple to see that At and Bt both give rise to a power-law
decay behavior. However, the factor Ct shows a quite different
decay behavior. For very short time scale t � �−1

c , we have
Ct ≈ 2�3

c t
3, which leads to a cubic exponential decay behavior

∼exp[− 2λ
π

�3
c t

3]. But for a long time scale t � �−1
c (�ct �

1), approximately we have tan−1 �ct ≈ tan−1 2�ct ≈ π/2,
and thus Ct ≈ π/2 is just a constant. This is quite different
from the results of thermal baths [27].

We show the time-dependent coefficients At , Bt , and Ct in
Fig. 1. By checking the positivity of d(t)/dt in the area t � 0,
it is straightforward to prove that (t) is a monotonically in-
creasing function for any squeezing parameters r and θ , which
means the coherence of the TLS always decays monotonically
(see Appendix C).

B. High-temperature limit

Now we consider the high-temperature limit. In this case,
we have coth ω

2T
≈ 2T

ω
, and put it into the integral Eq. (10).

However, the singularity in the denominator (ω2) still makes
it uneasy for integration. Here we eliminate this singularity by
taking the derivative of t to the second order in the integral
[27], and it turns out that ∂2

t (t) can be integrated out. Then
the decay factor (t) can be obtained by integrating over t

under the initial conditions |t=0 and ∂t|t=0. Obviously, from
Eq. (6) we know |t=0 = 0. And ∂t|t=0 can be obtained by

the integration of Eq. (10) by taking the derivative of t to the
first order and then setting t = 0, which gives ∂t|t=0 = 0. It
turns out that the decay factor (t) still has the same form as
Eq. (11), but the time-dependent coefficients At , Bt , and Ct

now become (τ := �ct)

At = 2T

�c

(2τ tan−1 τ − ln[1 + τ 2]),

Bt = 2T

�c

(
2τ [tan−1 2τ − tan−1 τ ] − ln

[1 + 4τ 2]
1
2

1 + τ 2

)
,

Ct = 2T

�c

(
[tan−1 2τ − 2 tan−1 τ ] + τ ln

1 + 4τ 2

1 + τ 2

)
. (13)

For the time scale t � �−1
c , considering �c � T , the above

time-dependent factors become

At ≈ 2πT t, Bt ≈ 0, Ct ≈ 2T t ln 4. (14)

Therefore, the decay factor (t) depends linearly on t , (t) =
κt , where we define the decay rate as

κ := 2λT

[
cosh 2r − ln 4

π
sinh 2r sin δθ

]
. (15)

That means that the coherence of the TLS decays exponentially,
and this is a Markovian process. Notice that �−1

c is a very
short time compared with the system dynamics, and t � �−1

c

just means after the relaxation time of the bath. When there is
no squeezing, this result returns to the thermal bath result in
previous studies [27,34].

Notice that here ln 4/π ≈ 0.44 < 1; thus the decay rate
κ is always positive for any phase difference δθ . It is worth
noticing that the decay rate κ depends on the phase dif-
ference δθ . Especially, when δθ = 3π/2, we have sin δθ =
−1, and thus the decay rate κ is suppressed; also, when
δθ = π/2, we have sin δθ = 1, and the decay rate κ gets
the maximum enhancement. When the squeezing strength r

is strong, cosh r ≈ sinh r ≈ er/2, and thus the decay rate is
κ ≈ λT er [1 − sin δθ (ln 4/π )].

Using the Born-Markovian approximation [27], we can also
derive a master equation describing the Markovian dephasing
behavior (Appendix B), i.e.,

ρ̇S = 1
2κ ′([σzρS, σz] + [σz, ρSσz]). (16)

But the decay rate is κ ′ = 2λT (cosh 2r − sinh 2r cos δθ ). For
thermal bath case (r = 0), this Born-Markovian dephasing rate
κ ′ coincides with the one obtain from the exact evolution [27];
but for a squeezed thermal bath, the Born-Markovian master
equation is not precise enough. We will discuss the reason for
this inconsistency later.

C. Exact result and the system entropy

The exact result can be obtained by making the following
expansion in the integral Eq. (10),

coth
ω

2T
= 1 + 2

∞∑
n=1

e− nω
2T . (17)

The zeroth order leads to the same integral as the above
zero-temperature case, and the other terms give rise to in-
tegrals similar to those of the above high-temperature case,
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except that the exponential cutoff should be corrected to be
exp[− ω

�c
− nω

2T
].

As a result, the decay factor still has the form of Eq. (11),
but the coefficients At , Bt , and Ct are changed to be

At = a0 + 2
∞∑

n=1

an, Bt = b0 + 2
∞∑

n=1

bn,

Ct = c0 + 2
∞∑

n=1

cn, (18)

where a0, b0, and c0 are exactly the same with the coefficients
At , Bt , and Ct in Eq. (12) (zero-temperature result), and an, bn,
and cn have the same form with the coefficients At , Bt , and Ct in
Eq. (13) (high-temperature result), except that the cutoff energy
�c in Eq. (13) should be corrected to be �c → �c/[1 + n�c

2T
]

correspondingly.
When the off-diagonal terms of the TLS decrease, the

system entropy always increases. The TLS state can be always
written as ρS = 1

2 (1 + ∑
viσ̂

i), where i = x,y,z, and vi :=
tr[ρSσ̂

i]. Then the two eigenvalues of ρS are 1
2 (1 ± u), where

u = [v2
x + v2

y + v2
z ]

1
2 ∈ [0,1]; thus the entropy of the TLS is

SS = ln 2 − 1

2
[(1 + u) ln(1 + u) + (1 − u) ln(1 − u)],

ṠS = −1

2
u̇ ln

1 + u

1 − u
. (19)

Notice that in this dephasing model, vz does not change; thus
u̇ = (vxv̇x + vyv̇y)/u [33].

Therefore, when u decreases, the system entropy SS in-
creases. In both cases of the zero-temperature and high-
temperature limits, the off-diagonal terms decay monotoni-
cally to zero, which indicates u decreases and the system
entropy SS increases monotonically.

IV. BATH DYNAMICS

In this section, we study the dynamics of the bath state,
especially the entropy change of the bath.

Using the evolution operator UI (t) given in Sec. II, we can
exactly write down the time-dependent bath state, i.e.,

ρB(t) = peρ
+
B (t) + pgρ

−
B (t), (20)

where ρ+
B (t) = Ue ρB(0) U

†
e and ρ−

B (t) = Ug ρB(0) U
†
g .

Notice that the evolution operators Ue,g [Eq. (2)] are both
products of the displacement operators D̂

±
k of each bath mode

b̂k . Therefore, similarly to the initial state ρB(0), ρB(t) always
keeps a product form ρB(t) = ⊗

k �k(t), where

�k(t) = pe�
+
k (t) + pg�

−
k (t) (21)

is the state of the bath mode b̂k , and �±
k (t) = D̂

±
k �k(0)[D̂

±
k ]†.

Thus the von Neumann entropy of ρB(t) can be calculated by
Ṡ[ρB(t)] = ∑

k Ṡ[�k(t)].
The evolution of �±

k (t) has a quite clear picture in the
phase space of the Wigner function; i.e., they are displaced
Gaussian packages with displacement ±αk(t). Initially, �k(0)
is a squeezed thermal state centered at the original point.
The operators Ue,g displace �k(0) to the new centers at
〈b̂k〉 = ±αk(t) = ±μk(1 − eiωkt ) correspondingly. With the
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FIG. 2. (a) The Wigner function of a �k = 1
2 (�+

k + �−
k ), where

�±
k = D̂

±
k �th[D̂

±
k ]† are the displaced thermal states with displacement

±αk(t) = ±μk(1 − eiωk t ) and μk = 0.1. (b) The time dependence of
Ṡ[�k(t)] calculated by exact diagonalization (red solid) and the ap-
proximation Eq. (23) (blue dashed) for T/ωk = 0.3. (c) Comparison
of the exact and approximated results for Ṡ[�k]|ωkt= π

2
at different

temperatures. (d) The relative deviation |1 − Ṡapprox/Ṡexact|.

time going by, the package trajectories of �±
k (t) form two

cycles, and the state �k(t) is their probabilistic mixture. That
also means that indeed the bath never reaches any steady
state.

As the result, the state �k(t) of each bath mode is a non-
Gaussian state. Thus it is still difficult to get the analytical
result of its von Neumann entropy, although we know exactly
the density matrix �k(t) [41–43]. To bypass this difficulty,
we calculate the dynamics of the bath state entropy with the
following approximation [19,44]:

ṠB = −tr[ρ̇B(t) ln ρB(t)] ≈ −tr[ρ̇B(t) ln ρB(0)], (22)

assuming that the the state ρB(t) does not change too much
from ρB(0) and thus ln ρB(t) ≈ ln ρB(0). This is quite similar
to the idea of the Born approximation widely adopted in open
quantum systems [27].

Under this approximation, for a thermal bath state ρth(0) =
Z−1 exp(−ĤB/T ), we obtain ṠB ≈ d

dt
〈ĤB〉/T , which has the

same form with the thermal entropy dS = đQ/T in conven-
tional thermodynamics [45]. Similarly, for a squeezed thermal
bath, the bath entropy gives ṠB ≈ d

dt
〈ŜĤBŜ†〉/T [6,19].

Thus, now the problem of the bath entropy dynamics is
converted into calculating the dynamical variable expectations
of the bath [19]. Since the exact evolution of the bath state ρB(t)
is known [Eq. (20)], we make a numerical comparison (Fig. 2)
for the above approximation with the result calculated by exact
diagonalization of the density matrix [for the single-mode state
�k(t) = pe�

+
k (t) + pg�

−
k (t)].

When the two Gaussian packages �±
k (t) are quite close to

each other, their mixture �k(t) well looks like a single Gaussian
package [Fig. 2(a)]. The separation of �±

k (t) is 2|αk(t)| =
2|gk |
ωk

√
2 − 2 cos ωkt � 4|gk|/ωk , which is determined by the

S-B interaction strength |gk|; thus a weaker S-B interaction
(λ � 1) makes a better approximation.
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In Fig. 2, we consider an example of a thermal bath state,
and the above approximation gives

Ṡ[�k] ≈ ωk

T

d

dt
〈b̂†kb̂k〉 = ωk

T

d

dt
|αk(t)|2

= ωk

T
2|μk|2ωk sin ωkt = 2|gk|2

T
sin ωkt. (23)

This approximated result has the same oscillation behavior as
the exact one [Fig. 2(b)], and the amplitudes also fit well (for
T/ωk = 0.3). Thus we can use the maximum value (at ωkt =
π/2) to characterize their deviation at different temperatures.

In Fig. 2(c) we show both the exact and approximated
result for Ṡ[�k]|ωkt= π

2
at different temperatures, as well as their

relative deviation in Fig. 2(d). It turns out that indeed this
approximation works well in the high-temperature regime, but
not so well when T → 0. Indeed, in the approximation (23), it
is explicit to see that Ṡ[�k] diverges at low temperature, and this
similar divergence behavior also appears in the conventional
thermal entropy đQ/T [46]. But the exact result for the von
Neumann entropy Ṡ[�k] does not diverge at low temperature
[red solid line in Fig. 2(c)].

This is because the bath entropy S[�k(t)] comes from two
origins: one is the uncertainty due to finite temperature; the
other one comes from the mixture proportion of �±

k (t) encoded
in the initial state probabilities pe,g . From Eq. (23), we see that
this approximated result does not depend on the probabilities
pe,g , which means this part of the uncertainty is omitted, and
only the thermal fluctuation is counted.

In the high-temperature regime, the entropy of thermal
fluctuation dominates and thus the approximation works
well. In the low-temperature regime, the thermal uncertainty
approaches zero; thus the non-Gaussian property of �k(t)
becomes important, and the approximation is not good. There-
fore, the validity of the approximation (22) replies on the
specific model and conditions. In this dephasing model, the
TLS brings in nonlinearity to the model, which gives rise to
the non-Gaussian property of the bath state. In this case, the
above approximation does not work well.

Here we emphasize that ṠB ≈ d
dt

〈ĤB〉/T describes the
bath entropy dynamics, although it has an analogous form
to the thermal entropy dS = đQ/T , which is defined for the
open system but not the bath. Thus, the above failure of the
approximation in the low-temperature regime is not in conflict
with the conventional thermodynamics.

For the squeezed thermal bath case, in the high-temperature
regime, the above “semi-Born” approximation gives the en-
tropy of one bath mode as

Ṡ[�k(t)] ≈ ωk

T

d

dt
〈ŝk b̂

†
kb̂k ŝ

†
k〉

= 2|gk|2
T

{cosh 2rk sin ωkt − sinh 2rk

× [sin(2ωkt − �θk) − sin(ωkt − �θk)]}, (24)

where �θk = θk − 2φk , and φk = arg[gk] is the phase of the
coupling strength gk . It is worth noticing that, similarly to the
system dynamics [Eq. (15)], the entropy changing rate Ṡ[�k]
depends on the squeezing phase �θk of the bath mode.

This can be intuitively understood from Figs. 3(a) and
3(b), where the Wigner functions of �k(t) = pe�

+
k + pg�

−
k
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FIG. 3. (a), (b) The Wigner function for �k = 1
2 (�+

k + �−
k ) at

the maximum separation of �±
k (when ωkt = π/2). The squeezing

phases θ are different in these two figures. (c), (d) Xt − (Yt cos δθ +
Zt sin δθ ). The shadowed area indicates the bath entropy could
decrease in this area, but the decreasing rate is quite small.

with different squeezing phases are shown at the maximum
separation of �±

k (ωkt = π/2). Obviously, due to the different
squeezing phases, the states �k(t) differ a lot, and this phase
dependence is also reflected in the expectation values 〈b̂†kb̂k〉,
〈b̂2

k〉, and the entropy change Ṡ[�k(t)]. Besides, it is clear to see
that this difference cannot be eliminated by doing any phase
rotation on the initial state.

This also explains why the dephasing rate of the system
depends on the squeezing phase of the bath [Eq. (15)]. Since
only the initial state of the bath is concerned when deriving
the Born-Markovian master equation (Appendix B), the above
bath dynamics is not taken into consideration; therefore, the
dephasing rate κ ′ [Eq. (16)] derived from the Born-Markovian
approximation does not coincide with the one obtained from
the exact evolution.

Summing up Ṡ[�k] for all bath modes, the entropy changing
rate of the total bath is given by the following integral:

ṠB =
∑

k

Ṡ[�k] = 2

T

∫ ∞

0

dω

2π
J (ω){cosh 2r sin ωt − sinh 2r

× [sin(2ωt − δθ ) − sin(ωt − δθ )]}. (25)

If we choose the Ohmic coupling spectral density J (ω) =
λω e−ω/�c as before, the above integral gives

ṠB = λ�2
c

πT
[Xt cosh 2r − sinh 2r (Yt cos δθ + Zt sin δθ )],

where the coefficients are (denoting τ := �ct)

Xt = 2τ

(1 + τ 2)2
, Yt = 2τ (1 − 4τ 2 − 14τ 4)

(1 + τ 2)2(1 + 4τ 2)2
,

Zt = 3τ 2(3 + 5τ 2 − 4τ 4)

(1 + τ 2)2(1 + 4τ 2)2
. (26)

When there is no squeezing in the bath (r = 0), ṠB = λ�2
c

πT
Xt ,

which is always positive for t > 0, meaning the bath entropy
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increases monotonically. The terms with Yt and Zt can either
increase or decrease with time, depending on the squeezing
phase δθ , but for practical squeezing parameters in current
experiments, usually sinh 2r � cosh 2r; thus still the first
increasing term Xt dominates, and ṠB remains positive.

In the strong-squeezing limit (r � 1), ṠB � λ�2
c

πT
cosh 2r ·

f (t, δθ ), where f (t, δθ ) := Xt − (Yt cos δθ + Zt sin δθ ) [see
Figs. 3(c), 3(d)]. In most areas, f (t, δθ ) remains positive,
but for a certain phase δθ [the shadowed area in Fig. 3(c)],
f (t, δθ ) could become a small but negative value, indicating
the decreasing of the bath entropy in this area. However, we also
should notice that the time scale in Figs. 3(c), 3(d) is around
t ∼ �−1

c , which is very short compared with the system time
scale (∼κ−1), and this is just the relaxation time of the bath.
In the coarse-grained time scale (Markovian approximation),
this decreasing of the bath entropy is negligible.

For the zero-temperature case, the total S-B system always
stays in a pure state. As the time evolves, ρSB(t) becomes a pure
entangled state, and thus we always have ṠB(t) = ṠS(t), which
also increases monotonically, as already discussed in Sec. III.
In this case, the thermal fluctuation does not contribute to the
bath entropy, and SB comes entirely from the correlation with
the TLS.

V. SUMMARY

In this paper, we study the entropy dynamics of a dephasing
model, where a TLS is coupled with a squeezed thermal bath
via a nondemolition interaction. We show the exact evolution
operator, and the time-dependent states of both the TLS and
its bath can be obtained exactly. Based on these states, we
calculate the entropy dynamics of both the TLS and the bath,
and find that the dephasing rate of the system relies on the
squeezing phase of the bath. In the zero-temperature and high-
temperature limits, both the system and bath entropy increase
monotonically in the coarse-grained time scale (Markovian
approximation).

Moreover, we find that the dephasing rate of the system
relies on the squeezing phase θ of the bath. Particularly,
in the high-temperature limit, the system dephasing process
is Markovian, and the dephasing rate κ = 2λT [cosh 2r −
ln 4
π

sinh 2r sin δθ ]. We also notice that this dephasing rate can-
not be precisely given by the Born-Markovian approximation
which is widely adopted in open quantum systems.

We also discuss the validity of using the thermal entropy
analogy ṠB ≈ d

dt
〈ĤB〉/T to approximately calculate the bath

entropy. For this dephasing model, when the bath temperature
is high, the thermal fluctuation dominates the bath entropy
dynamics, and this approximation works well; in the low-
temperature regime, the non-Gaussian property of the bath
state becomes more important, and this approximation does
not work well.
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APPENDIX A: EVOLUTION OPERATOR

Here we show the derivation of the evolution operator UI (t)
[Eq. (2)] [29]. In the interaction picture, the evolution operator
can be written as the following time-ordered form:

UI (t) = T exp

[
−i

∫ t

0
ds V̂SB(s)

]

= T lim
N→∞

exp

[
−i

N−1∑
n=0

V̂SB(tn)δt

]
, (A1)

where δt = t/N is the time interval, tn = nδt , and V̂SB(t) is in
the interaction picture.

For the interaction Hamiltonian (1) in the above dephasing
model, we have [V̂SB(t), V̂SB(s)] = 2i

∑
k |gk|2 sin ωk(s − t).

This is a c-number, thus we can use the Baker-Campbell-
Hausdorff (BCH) formula:

e
∑N

n=1 An = eA1eA2 · · · eAN e− 1
2

∑
m<n[Am,An]. (A2)

Then we obtain

UI (t) = T lim
N→∞

N−1∏
n=0

e−iV̂SB(tn)δt · e
δt2

2

∑
m<n[V̂SB(tm),V̂SB(tn)].

The above product is already time-ordered; thus the time-order
operator T can be removed. Then using the BCH formula in
reverse, the evolution operator becomes

UI (t) = lim
N→∞

exp

[
−i

N−1∑
n=0

V̂SB(tn)δt

]
=exp

[
−i

∫ t

0
ds V̂SB(s)

]

= exp{σ̂ z · [αk(t)b†k − α∗
k (t)bk]}, (A3)

where αk(t) = μk(1 − eiωkt ) and μk = gk/ωk .

APPENDIX B: MARKOVIAN MASTER EQUATION

Here we use the Born-Markovian approximation to derive
a master equation for the TLS [27,39]. The master equation is
derived from

ρ̇S = −trB

∫ ∞

0
ds[V̂SB(t),[V̂SB(t − s),ρS(t) ⊗ ρB(0)]], (B1)

where V̂SB(t) = σ̂ z · (
∑

kgkb̂ke
−iωkt + g∗

k b̂
†
ke

iωkt ) :=
σ̂ z · B̂(t). The above commutator gives∫ ∞

0
ds 〈B̂†(t)B̂(t − s)〉[σ̂ zρS(t), σ̂ z]

=
∑

k

∫ ∞

0
ds 〈(g∗

k b̂
†
ke

iωkt + gkb̂ke
−iωkt )

× (gkb̂ke
−iωk (t−s) + g∗

k b̂
†
ke

iωk(t−s))〉 · [σ̂ zρ,σ̂ z]

=
∫ ∞

0
ds

∫ ∞

0

dω

2π
J (ω)({ñ(ω)eiωs + [ñ(ω) + 1]e−iωs}

+ [ũ(ω)e−2iωt+iωs + H.c.])[σzρ,σz],
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where we denote

ñ(ω) = cosh 2r
[
np(ω) + 1

2

] − 1
2 ,

ũ(ω) = −eiδθ sinh 2r
[
np(ω) + 1

2

]
, (B2)

and np(ω) = [exp(ω/T ) − 1]−1 is the Planck function.
Utilizing the formula

∫ ∞

0
ds ei(ε−ω)s = πδ(ε − ω) + iP

1

ε − ω
, (B3)

we obtain (omitting the principle integral)

∫ ∞

0
ds 〈B̂†(t)B̂(t − s)〉

= lim
ω→0

J (ω)

{[
ñ(ω) + 1

2

]
+ 1

2

[
ũ(ω)e−2iωt + H.c.

]}
.

(B4)

Adopting the Ohmic spectrum J (ω) = λω e− ω
�c , we have

lim
ω→0

λω e− ω
�c

[
np(ω) + 1

2

] = λT . (B5)

Now we obtain the master equation ρ̇S = L[ρS] where

L[ρS] = 1
2κ ′([σzρS, σz] + [σz, ρSσz]),

κ ′ = 2λT (cosh 2r − sinh 2r cos δθ ). (B6)

Notice that here the phase dependence in the dephasing rate κ ′
is different from what we obtained in the main text using the
exact evolution operator, which is more precise.

APPENDIX C: THE MONOTONIC INCREASE
OF THE DECAY RATE

Here we show the proof for the monotonic increase of the
system decay factor (t) in Sec. III A; namely, ̇(t) is always
positive. Since for any r > 0, we have cosh 2r > sinh 2r > 0;
thus

̇(t)
π

λ cosh 2r

� Ȧt−
√

Ḃ2
t +Ċ2

t

⎛
⎝ Ḃt√

Ḃ2
t +Ċ2

t

cos δθ+ Ċt√
Ḃ2

t +Ċ2
t

sin δθ

⎞
⎠

= Ȧt −
√

Ḃ2
t + Ċ2

t cos(δθ − ϕ)

� Ȧt −
√

Ḃ2
t + Ċ2

t , (C1)

where we denote ϕ := tan−1(Ċt /Ḃt ) and τ := �ct . Using the
expression of At , Bt , and Ct [Eq. (12)], we have

Ȧt −
√

Ḃ2
t + Ċ2

t = 2τ

1 + τ 2

⎛
⎝1 −

√
1 + τ 2

1 + 4τ 2

⎞
⎠ � 0. (C2)

Thus, in the area τ � 0, we always have ̇(t) � 0. Therefore,
(t) increases monotonically, and is always positive [since
(0) = 0].
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