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When an open system comes into contact with several thermal baths, the entropy produced by the irreversible
processes (dSi = dS − ∑

α đQα/Tα) keeps increasing, and this entropy production rate is always non-negative.
However, when the system comes into contact with nonthermal baths containing quantum coherence or squeezing,
this entropy production formula does not apply. In this paper, we study the increasing rate of mutual information
between an open system and its environment. In the case of canonical thermal baths, we prove that this mutual
information production rate could return exactly to the previous entropy production rate. Furthermore, we study
an example of a single boson mode that comes into contact with multiple squeezed thermal baths, where the
conventional entropy production rate does not apply, and we find that this mutual information production rate
remains non-negative, which indicates a monotonic increase in the correlation between the system and its
environment.
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I. INTRODUCTION

The entropy change of a system can be considered to
come from two origins, i.e., dS = dSe + dSi [1–4], where dSe

comes from the exchange with external sources, and it could
be either positive or negative; dSi is the entropy change due
to the irreversible processes. Then the second law is simply
stated as dSi/dt � 0, which means the entropy produced by
the irreversible processes always increases, and Rep := dSi/dt

is called the entropy production rate (EPr).
When the system comes into contact with a thermal bath

with temperature T , we have dSe = đQ/T (hereafter we refer
to this as the thermal entropy), where đQ is the heat flowing
into the system. If we have multiple independent thermal baths
with different temperatures Tα (Fig. 1), the EPr becomes

dSi

dt
= dS

dt
−

∑
α

1

Tα

dQα

dt
:= Rep, (1)

where đQα is the heat coming from bath-α [1,4].
Furthermore, when an open quantum system is weakly

coupled with multiple thermal baths, its dynamics can usually
be described by the following Lindblad (GKSL) equation [5,6]:

ρ̇ = i[ρ,ĤS] +
∑

α

Lα[ρ], (2)

where Lα[ρ] describes the dissipation due to bath-α. Utilizing
Ṡ[ρ] = −tr[ρ̇ ln ρ] and Q̇α = tr[ĤS · Lα[ρ]], the EPr (1) can
be rewritten as the following Spohn formula (denoted as RSp

hereafter) [7–12]:

Rep =
∑

α

tr
[
Lα[ρ]

(
ln ρ(α)

ss − ln ρ
)]

:= RSp. (3)

Here we call ρ(α)
ss = Z−1

α exp[−ĤS/Tα] the partial steady state
associated with bath-α, satisfying Lα[ρ(α)

ss ] = 0. It can be
proved that RSp � 0, which means the irreversible entropy
production keeps increasing (see the proof in Appendix A or
Refs. [7,8]).

However, in the above discussion, the thermal entropy
dSe = đQ/T only applies for canonical thermal baths. If the
bath is some noncanonical state containing quantum coherence
or squeezing [13–15], the temperature is not well defined, thus

it is no longer proper to use đQ/T for dSe [16], and the
relations Rep = RSp or Rep � 0 no longer hold either.

Therefore, for such nonthermal baths, the conventional
thermodynamic description of the EPr does not apply, and
it is believed that the corrections on work [17–19], or excess
heat [16], should be considered in these baths.

Here we replace the thermal entropy term −Q̇α/Tα by
the von Neumann entropy of bath-α, ṠBα = −tr[ρ̇Bα ln ρBα].
Furthermore, we assume that the multiple baths are indepen-
dent from each other, thus we obtain

∑
α ṠBα = ṠB . Then this

generalization becomes

RI = dSS

dt
+ dSB

dt
= d

dt
(SS + SB − SSB ) = d

dt
ISB. (4)

Here ṠSB = 0 since the total system S + B evolves unitarily,1

and ISB := SS + SB − SSB is just the mutual information
between the system and its environment, which measures
their correlation [20–25]. Therefore, we call RI the mutual
information production rate (MIPr).

RI has a clear physical meaning: a positive RI indicates
that the correlation between the system and its environment
is increasing. In the following, we are going to show that
this MIPr (4) indeed has quite a close connection with the
previous EPr (1). For thermal baths of the open system, we can
prove that this MIPr could return exactly to the conventional
thermodynamic description of the EPr in the weak-coupling
limit, namely RI = Rep. That means, for a thermal bath,
that conventional entropy production can be equivalently
interpreted as mutual information production, and the second
law statement (RI =)Rep � 0 can also be understood as the
system-bath correlation always keeps increasing.

Furthermore, we will study an example of a single boson
contacted with multiple squeezed thermal baths. In this
case, the conventional EPr does not apply. We calculate
the MIPr under the weak-coupling limit and the Markovian

1Ṡ[ρSB ] = −tr[ρ̇SB ln ρSB ] = −i tr[ρSBĤ ln ρSB −
ĤρSB ln ρSB ] = 0, where Ĥ is the Hamiltonian of the total
S + B system.
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FIG. 1. Demonstration for an open quantum system (S) interact-
ing with its environment composed of multiple baths (Bα). The baths
are independent from each other, and they do not have to be canonical
thermal states.

approximation, and we find that it is exactly equal to the Spohn
formula for nonthermal baths, thus we can prove RI � 0,
which means that the monotonic increase of the system-bath
correlation also holds in this squeezed bath example.

II. MUTUAL INFORMATION PRODUCTION IN
THERMAL BATHS

We consider first a system that is coupled with sev-
eral thermal baths. In this case, the initial state of bath-
α is ρBα(0) = Z−1

α exp[−ĤBα/Tα]. Assuming ρBα(t) does
not change too much during evolution [26–28], we have
ln ρBα(t) = ln[ρBα(0) + δρt ] � ln[ρBα(0)] + o(δρt ), thus the
entropy change of bath-α is

ṠBα = −tr[ρ̇Bα(t) ln ρBα(t)] � −tr

⎡
⎣ρ̇Bα(t) ln

e− ĤBα
Tα

Zα

⎤
⎦

= 1

Tα

d

dt
〈ĤBα〉 � −Q̇α

Tα

. (5)

Here − d
dt

〈ĤBα〉 is the energy loss of bath-α, while Q̇α is the
energy gain of the system from bath-α, and they are equal to
each other in the weak-coupling limit. Assuming the baths are
independent from each other, ρB(t) � ∏

α ρBα(t), the MIPr
becomes

RI = ṠS +
∑

α

ṠBα = ṠS −
∑

α

Q̇α

Tα

= Rep. (6)

Therefore, for thermal baths, the MIPr (4) is equal to the
conventional thermodynamic description of the EPr (1).

Thus, the second law statement Rep � 0 is equivalent to
RI � 0, which means the mutual information between the
system and its environment continues to increase monotoni-
cally. This can be understood as an equivalent statement for
the entropy production when the baths are canonical thermal
baths. We notice that this equivalence was also shown in the
“correlation entropy” approach [21,22,25].

III. MUTUAL INFORMATION PRODUCTION IN
SQUEEZED BATHS

Now we study an example of a single boson mode
interacting with multiple squeezed thermal baths [11,14,15].
In this case, the thermal entropy dSe = đQ/T cannot be used,
and nor can the EPr (1). Here we calculate the MIPr (4), and we
will prove that it is equal to the Spohn formula for nonthermal
baths, thus it could remain non-negative, RI � 0.

A. Master equation and Spohn formula

The Hamiltonians of the single boson mode and the
bosonic bath are ĤS = � â†â, ĤB = ∑

α ĤBα , and ĤBα =∑
k ωαk b̂

†
αkb̂αk , and they interact through V̂SB = ∑

α â†B̂α +
âB̂†

α . Here B̂α = ∑
gαkb̂αk is the operator of bath-α, and the

initial states of the baths are squeezed thermal baths (hereafter,
all the density matrices are written in the interaction picture),

ρ0
Bα = 1

Zα

e−βα SαĤBαS†
α , βα := T −1

α ,

Sα : =
∏
k

exp

[
1

2
λ∗

αkb̂
2
αk − H.c.

]
, λαk = rαke

−iθαk . (7)

Here Sα is the squeezing operator for the boson modes in
bath-α. With the Born-Markovian approximation, we obtain
a master equation ρ̇ = ∑

α Lα[ρ] for the open system alone
[26,29], where

Lα[ρ] = γα

2
[ñα(2â†ρâ − {ââ†,ρ}) + (ñα + 1)(2âρâ†

−{â†â,ρ}) − ũα(2â†ρâ† − {(â†)2,ρ})
− ũ∗

α(2âρâ − {â2,ρ})].
The coupling spectra of the squeezed bath-α are
Jα(ω) := 2π

∑
k |gαk|2δ(ω − ωαk) and Kα(ω) :=

2π
∑

k g2
αkδ(ω − ωαk). Without loss of generality, we

omit the phase of gαk and thus Kα(ω) = K∗
α(ω) = Jα(ω).

Here we denote γα := Jα(�) = Kα(�), and the
parameters ñα := ñα(�), ũα := ũα(�) are calculated
from ñα(ωk) := tr[ρ0

Bαb̂
†
αkb̂αk], ũα(ωk) := −tr[ρ0

Bαb̂2
αk] (see

Appendix B). The master equation gives

d

dt
〈ã(t)〉 = −

∑
α

γα

2
〈ã〉, d

dt
〈ã2〉 = −

∑
α

γα[〈ã2〉 − ũα],

d

dt
〈ã†ã〉 = −

∑
α

γα[〈ña〉 − ñα]. (8)

Here we denote n̂a := â†â, and 〈õ(t)〉 := tr[ρô(t)] gives
variables in the rotating frame.2

2Here ρ is in the interaction picture, but ô is in the Schrödinger
picture, thus we have 〈â(t)〉 = 〈ã(t)〉e−i�t . Here 〈ô(t)〉 stands for
observable expectations, which are independent of pictures, and 〈õ(t)〉
are variables in the rotating frame, thus in Eq. (8) the dependence of
the system frequency � is canceled.
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The partial steady states ρ(α)
ss , which satisfy Lα[ρ(α)

ss ] = 0,
are now squeezed thermal states,

ρ(α)
ss = 1

Zα

exp[−βα�Sαâ†âS†
α],

Sα : = exp

[
−

(
1

2
ζ ∗
α â2 − H.c.

)]
, ζα = λαk

∣∣
ωk=�

:= rαeiθα .

(9)

Here Sα is a squeezing operator for the system. Although
the baths are not thermal, we can still write down the Spohn
formula RSp = ∑

α R
(α)
Sp , where

R
(α)
Sp : = tr[Lα[ρ](ln ρ(α)

ss − ln ρ)]

: = χα − tr[Lα[ρ] ln ρ], (10)

and we can prove that R
(α)
Sp � 0 and RSp � 0 also hold in this

nonthermal case (Appendix A).
However, since the above Spohn formula RSp for nonther-

mal baths no longer comes from the thermodynamic EPr (1), its
physical meaning is unclear now. In the thermal case, the first
term in R

(α)
Sp , χα := tr[Lα[ρ] ln ρ(α)

ss ], gives the changing rate
of the thermal entropy (χα = −Q̇α/Tα). But for the squeezed
case, it becomes

χα = �

Tα

γα(cosh 2rα[〈ña(t)〉 − ñα] − 1
2 sinh 2rα

×{e−iθα [〈ã2(t)〉 − ũα] + H.c.}). (11)

It is difficult to tell the physical meaning of this quantity. In
the following, we will show that indeed Eq. (11) is just the
changing rate of the von Neumann entropy of bath-α, i.e.,
χα = ṠBα , and then Eq. (10) leads directly to

RSp =
∑

α

R
(α)
Sp = ṠS +

∑
α

ṠBα = RI . (12)

B. Bath entropy dynamics

Now we are going to calculate the entropy changing rate
ṠBα of bath-α directly. To do this, we adopt the same trick as in
the thermal case. Assuming the squeezed baths do not change
too much (interaction picture), the entropy of the bath evolves
as

d

dt
S[ρBα(t)] � −tr

[
ρ̇Bα(t) ln

exp[−βα SαĤBαS†
α]

Zα

]

= d

dt

∑
k

ωαk

Tα

(
cosh 2rαk〈b̃†αk(t)b̃αk(t)〉

+ 1

2
sinh 2rαk[〈b̃2

αk(t)〉e−iθαk + H.c.]
)
.

(13)

Thus, the calculation of the bath entropy is now reduced to
calculating the time derivative of the expectations of the bath
operators such as 〈b̃†αk(t)b̃αk(t)〉 and 〈b̃2

αk(t)〉.
This can be done with the help of the Heisen-

berg equations, ˙̂bαk = −iωαkb̂αk − ig∗
αkâ, and ˙̂a = −i�â −

i
∑

α gαkb̂αk , which lead to the quantum Langevin equation
[29–31]

d

dt
â = −i�â − 1

2
�â − Ê(t). (14)

Here � := ∑
α γα is the total decay rate, and γα are the same as

those in the master equation; Ê(t) := ∑
α ξ̂α(t) is the random

force, and ξ̂α(t) := i
∑

k gαkb̂αk(0)e−iωαk t is the contribution
from bath-α. Thus â(t) and b̂αk(t) evolve as

â(t) = â(0)e−i�t− �
2 t −

∫ t

0
ds e−i�(t−s)− �

2 (t−s)Ê(s),

b̂αk(t) = b̂αk(0)e−iωαk t − ig∗
αk

∫ t

0
ds e−iωαk (t−s)â(s). (15)

To further calculate the bath entropy change, we are now
going to demonstrate that the following two relations hold in
the weak-coupling limit and the Markovian approximation:

d

dt

∑
k

fk〈b̃†αkb̃αk〉 � f(�)γα[〈ña〉 − ñα],

d

dt

∑
k

hk

〈
b̃2

αk

〉 + H.c. � −h(�)γα[〈ã2〉 − ũα] + H.c.,

(16)

where fk and hk are arbitrary coefficients depending on k.
If we set fk = ωαk

Tα
cosh 2rαk , hk = ωαk

2Tα
sinh 2rαke

−iθαk , and
sum up the above two equations, then the left side simply
gives ṠBα [Eq. (13)]; at the same time, the right side is just
equal to χα [Eq. (11)]. Thus we can prove χα = ṠBα , i.e., the
term χα = tr[ ln ρ(α)

ss Lα[ρ]] in the Spohn formula is just the
changing rate of the von Neumann entropy of bath-α.

In addition, if we set fk = ωαk and hk = 0, the above
relations lead to d

dt
〈ĤBα〉 = �γα[〈ña〉 − ñα] = −Q̇α , which

means the energy loss of bath-α is equal to the energy gain of
the system from bath-α [as we utilized in the discussion below
Eq. (5)].

The calculation of Eq. (16) goes as follows:

d

dt

∑
k

fk〈b̃†αkb̃αk〉 =
∑

k

fkigαk〈â†b̂αk〉 + H.c.

=
∑

k

fk

[
igαk〈â†(t)b̂αk(0)〉e−iωαk t + |gαk|2

×
∫ t

0
ds e−iωαk (t−s)〈â†(t)â(s)〉

]
+ H.c.

(17)
The first term in the brackets can be further calculated by
substituting â(t) [Eq. (15)],∑

k

fkigαk〈â†(t)b̂αk(0)〉e−iωαk t + H.c.

= −
∑

k

fk|gαk|2
∫ t

0
ds e[i(�−ωk )− �

2 ](t−s)〈b̂†αk(0)b̂αk(0)〉 + H.c.

= −
∫ t

0
ds

[ ∫ ∞

0

dω

2π
e[i(�−ω)− �

2 ](t−s)Jα(ω)f(ω)ñα(ω)

]
+ H.c.

(18)
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Assuming the frequency integral in the brackets gives a fast-
decaying function of (t − s), we extend the time integral to
t → ∞ (Markovian approximation), and that gives

−
∫ ∞

0

dω

2π

[∫ ∞

0
ds ei(�−ω)s− 1

2 �s

]
Jα(ω)f(ω)ñα(ω) + H.c.

= −
∫ ∞

0

dω

2π
Jα(ω)f(ω)ñα(ω)

�(
�
2

)2 + (ω − �)2

� −f(�)γαñα. (19)

The last line holds in the weak-coupling limit � � �

because the Lorentzian function in the integral approaches
2πδ(ω − �).

To calculate the second term of Eq. (17), we should
notice that 〈â†(t)â(s)〉 = 〈ã†(s)ã(s)〉e(i�− �

2 )(t−s) holds for t �
s (quantum regression theorem [26,30]). Here 〈õ1(t)õ2(s)〉
is a correlation function in the rotating frame, defined by
〈õ1(t)õ2(s)〉 = tr[ô1 Et−s ô2 Esρ(0)] for t � s [26], where ô1,2

are operators in the Schrödinger picture, Et is the evolution
operator solved from the above master equation in the inter-
action picture, and ρ(t) = Et−sρ(s). Similarly, 〈ô1(t)ô2(s)〉 are
correlation functions in the nonrotating frame. Thus the second
term of Eq. (17) gives∑

k

fk|gαk|2
∫ t

0
ds e−iωαk (t−s)〈â†(t)â(s)〉 + H.c.

�
∫ ∞

0

dω

2π
f(ω)Jα(ω)〈ña(t)〉

∫ ∞

0
ds ei(�−ω)s− �

2 s + H.c.

=〈ña(t)〉
∫ ∞

0

dω

2π
f(ω)Jα(ω)

�(
�
2

)2 + (ω − �)2

�γαf(�)〈ña(t)〉. (20)

Again we adopted the Markovian approximations as before,
and 〈ña(s)〉 is taken out of the integral directly.

Therefore, summing up Eqs. (19) and (20), we obtain the
first relation in Eq. (16). The second relation can be obtained
in a similar way (see Appendix B). Then, by setting proper
coefficients fk and hk in Eq. (16), we can prove χα = ṠBα ,
and further RI = RSp. Since we can prove the Spohn formula
RSp � 0, the MIPr RI also remains positive, which means
that the system-bath mutual information, or their correlation,
continues to increase monotonically in this nonthermal case.

IV. SUMMARY

In this paper, we study the production of mutual information
between a system and its environment. We find that this
MIPr (4) has a close connection with the conventional
thermodynamic description of the EPr (1): when the baths of
the open system are canonical thermal baths, this MIPr could
return exactly to the previous EPr. Therefore, the second law
statement Rep � 0 can be understood equivalently as saying
the system-bath correlation always keeps increasing.

In addition, we also study an example of a single boson
mode coming into contact with multiple squeezed thermal
baths. In this case, the temperatures of the baths are not well
defined, and the previous EPr does not apply. We proved that
the MIPr is still positive, which means the monotonic increase

of the system-bath correlation also exists in this case. It is
definitely worthwhile to study the MIPr in more nonthermal
systems.

We remark that the proof for the positivity of the MIPr
and the Spohn formula relies on the fact that the dynamics
of the system can be well described by a Markovian master
equation with the Lindblad (GKSL) form. If this is not fulfilled
[22,28,32,33], the positivity cannot be guaranteed.

Our study indicates that it is the system-bath correlation
that keeps increasing monotonically, although the total S + B

system evolves unitarily. This idea is also consistent with some
other fundamental studies on thermodynamics, such as the
local relaxation hypothesis [34], entanglement-based thermo-
dynamics [35], and the mutual information understanding of
Blackhole radiation [36].
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APPENDIX A: PROOF FOR THE POSITIVITY OF THE
SPOHN FORMULA

Now we prove that the Spohn formula RSp is positive also
for nonthermal baths. Namely, for a Lindblad (GKSL) master
equation such as [5,6]

ρ̇ = i[ρ, ĤS] +
∑

α

Lα[ρ] := i[ρ, ĤS] + L[ρ],

Lα[ρ] =
∑

n

Vα,nρV †
α,n − 1

2
{V †

α,nVα,n, ρ}, (A1)

we have

R
(α)
Sp = tr

[
Lα[ρ](ln ρ(α)

ss − ln ρ)
]

� 0,

RSp =
∑

α

R
(α)
Sp � 0, (A2)

where ρ(α)
ss is the partial steady state satisfying Lα[ρ(α)

ss ] = 0.
The operator Lα[ρ] describes the dissipation to bath-α, which
does not have to be a thermal bath, and ρ(α)

ss is not necessarily
a thermal state.

Our proof follows from Ref. [7], where a single bath was
concerned and the EPr was defined by the relative entropy
[15,37],

σ = − d

dt
S[ρ(t) ‖ ρss] = tr[L[ρ](ln ρss − ln ρ)]. (A3)

Here ρss is the steady state of the system satisfying L[ρss] = 0.
This is equivalent to Eq. (A2) when only one single bath
is concerned. This EPr based on relative entropy always
gives σ = 0 at the steady state, even for the nonequilibrium
steady state when there are multiple baths, and usually a
steady nonequilibrium flux exists. However, the EPr we

012139-4



PRODUCTION RATE OF THE SYSTEM-BATH MUTUAL . . . PHYSICAL REVIEW E 96, 012139 (2017)

used [Eq. (A2)] will remain nonzero in this case, which
means the irreversible entropy is still being produced in the
nonequilibrium steady state.

The proof for the positivity of Eq. (A2) is as follows.
Proof: Since the master equation has Lindblad (GKSL)

form, we obtain

tr[Lα[ρ] ln ρ] =
∑

n

tr
[
Vα,nρV †

α,n ln ρ − V †
α,nVα,nρ ln ρ

]
.

(A4)

Now we need the Lieb theorem [38], i.e., the functional
f (V )

q [ρ] = −tr[ρqVρ1−qV †] is convex for ∀ 0 � q � 1, i.e.,

f (V )
q [λ1ρ1 + λ2ρ2] � λ1f

(V )
q [ρ1] + λ2f

(V )
q [ρ2]. (A5)

At q = 0, fq=0[ρ] = −tr[VρV †] is a linear map satisfying
f0[λ1ρ1 + λ2ρ2] = λ1f0[ρ1] + λ2f0[ρ2], therefore the deriva-
tive ∂qf

(V )
q := ε−1[f (V )

q+ε − f (V )
q ] is also convex around q = 0,

which reads

∂qf
(V )
q [ρ]|q=0 = tr[ρqVρ1−q ln ρV † − ρq ln ρVρ1−qV †]|q=0 = tr[V †Vρ ln ρ − VρV † ln ρ] := −tr[LV [ρ] · ln ρ]. (A6)

Here we denoted L̂V [ρ] := VρV † − 1
2 {V †V, ρ}. Thus, we obtain the following relation (λ � 0):

∂qf
(V )
q

[
λρ + (1 − λ)ρ(α)

ss

] = −tr
[
L̂V [λρ + (1 − λ)ρ(α)

ss ] ln[λρ + (1 − λ)ρ(α)
ss ]

]
� λ∂qf

(V )
q [ρ] + (1 − λ)∂qf

(V )
q [ρ(α)

ss ] = −λ tr[L̂V [ρ] ln ρ] − (1 − λ)tr
[
L̂V

[
ρ(α)

ss

]
ln ρ(α)

ss

]
. (A7)

Since the Lindblad operator can be written as Lα[ρ] = ∑
n L̂Vα,n

[ρ], from the above relation we obtain

−tr
[
Lα

[
λρ + (1 − λ)ρ(α)

ss

]
ln

[
λρ + (1 − λ)ρ(α)

ss

]]
� −λ tr[Lα[ρ] ln ρ] − (1 − λ)tr

[
Lα

[
ρ(α)

ss

]
ln ρ(α)

ss

]
. (A8)

Here Lα is a linear operator, thus Lα[λρ + (1 − λ)ρ(α)
ss ] = λLα[ρ] + (1 − λ)Lα[ρ(α)

ss ]. Remember that we require Lα[ρ(α)
ss ] = 0,

thus the above inequality becomes

−λ tr
[
Lα[ρ] ln

[
λρ + (1 − λ)ρ(α)

ss

]]
� −λ tr[Lα[ρ] ln ρ]. (A9)

In the limit λ → 0+, we obtain

tr
[
Lα[ρ]

(
ln ρ(α)

ss − ln ρ
)] = R

(α)
Sp � 0. (A10)

Therefore, we have RSp = ∑
R

(α)
Sp � 0. �

APPENDIX B: PROPERTIES OF A SQUEEZED BATH AND THE MASTER EQUATION

1. Squeezed bath properties

Here we show some basic properties of a squeezed thermal bath. The Hamiltonian of the bath is ĤB = ∑
k ωkb̂

†
kb̂k , and the

squeezed thermal state is

ρB := SρthS†, ρth := 1

Z exp[−β ĤB]. (B1)

Here S is the squeezing operator for the boson bath,

S :=
∏
k

sk(λk), sk(λk) := exp

[
1

2
λ∗

k b̂
2
k − H.c.

]
, λk := rke

iθk (rk > 0), (B2)

and sk is the squeezing operator for mode b̂k in the bath. They satisfy

s
†
k(λk)b̂ksk(λk) = b̂k +

[
1

2

[
λk(b̂†k)2 − λ∗

k b̂
2
k

]
, b̂k

]
+ 1

2!

[
1

2

[
λk(b̂†k)2 − λ∗

k b̂
2
k

]
,

[
1

2

[
λk(b̂†k)2 − λ∗

k b̂
2
k

]
, b̂k

]]
+ · · ·

= b̂k − λkb̂
†
k + 1

2!
|λk|2b̂k − 1

3!
λk|λk|2b̂†k − 1

4!
|λk|4b̂k + · · · = b̂k cosh rk − b̂

†
ke

iθk sinh rk,

sk(λk)b̂ks
†
k(λk) = b̂k cosh rk + b̂

†
ke

iθk sinh rk. (B3)
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Thus we have

ũk := −tr
[
ρBb̂2

k

] = −tr[ρths
†
kb̂ksks

†
kb̂ksk] = −tr[ρth(b̂k cosh rk − b̂

†
ke

iθk sinh rk)(b̂k cosh rk − b̂
†
ke

iθk sinh rk)]

= cosh rk sinh rke
iθk (2nk + 1) = eiθk sinh 2rk

(
nk + 1

2

)
, (B4)

ñk := tr[ρBb̂
†
kb̂k] = tr[ρths

†
kb̂

†
ksks

†
kb̂ksk] = tr[ρth(b̂†k cosh rk − b̂ke

−iθk sinh rk)(b̂k cosh rk − b̂
†
ke

iθk sinh rk)]

= cosh2 rknk + sinh2 rk(nk + 1) = cosh 2rk

(
nk + 1

2

)
− 1

2
, (B5)

where nk := [exp(βωk) − 1]−1 is the Planck distribution.

2. Master equation derivation

Now we derive the master equation for a single boson mode (ĤS = �â†â) interacting with a squeezed boson bath. The
interaction Hamiltonian is V̂SB = âB̂† + â†B̂, where B̂ = ∑

k gkb̂k , and the master equation is derived by

ρ̇ = −trB

∫ ∞

0
ds[ṼSB (t − s), [ṼSB (t), ρ(t) ⊗ ρB]]

= trB

∫ ∞

0
ds[ṼSB(t − s)ρ(t)ρBṼSB(t) − ṼSB (t − s)ṼSB (t)ρ(t)ρB] + H.c. (B6)

Here we use õ(t) to denote the operators in the interaction picture, and ã(t) = âe−i�t , b̃k(t) = b̂ke
−iωkt . We adopted the Born

approximation ρSB(t) � ρ(t) ⊗ ρB , and

ρB(t) � ρ0
B = 1

Z exp[−β SĤBS†]. (B7)

We define the coupling spectrum as

J (ω) :=
∑

k

|gk|2δ(ω − ωk), K(ω) :=
∑

k

g2
k δ(ω − ωk). (B8)

We omit the phase of gk , thus we have K(ω) = J (ω) = K∗(ω). Here is the calculation for some terms:∫ ∞

0
ds trB

[
ã†(t − s)B̃(t − s)ρ(t)ρBã(t)B̃†(t)

] =
∫ ∞

0
ds â†ρâe−i�s trB[ρBB̃†(t)B̃(t − s)]

= â†ρâ

∫ ∞

0

dω

2π

∫ ∞

0
ds e−i�seiωs J (ω)ñ(ω) = 1

2
γ ñâ†ρâ, (B9)∫ ∞

0
ds trB

[
ã†(t − s)B̃(t − s)ρ(t)ρBã†(t)B̃(t)

] =
∫ ∞

0
ds â†ρâ†e2i�t e−i�s trB[ρBB̃(t)B̃(t − s)]

= −â†ρâ†e2i�t

∫ ∞

0

dω

2π

∫ ∞

0
ds e−i�seiωse−2iωt K(ω)ũ(ω) = −1

2
γ ũâ†ρâ†,

(B10)

where γ = J (�) = K(�) and

ñ = cosh 2r�

(
n� + 1

2

)
− 1

2
, ũ = eiθ� sinh 2r�

(
n� + 1

2

)
. (B11)

We omitted all the principal integrals in the above calculation. Thus the master equation is (interaction picture)

ρ̇ =γ ñ

(
â†ρâ − 1

2
{ââ†,ρ}

)
+ γ (ñ + 1)

(
âρâ† − 1

2
{â†â,ρ}

)

− γ ũ

(
â†ρâ† − 1

2
{(â†)2,ρ}

)
+ γ ũ∗

(
âρâ − 1

2
{(â)2,ρ}

)
. (B12)

From the above master equation, we obtain

d

dt
〈ã(t)〉 = −γ

2
〈ã〉, d

dt
〈ã†ã〉 = −γ [〈ña〉 − ñ],

d

dt
〈ã2〉 = −γ [〈ã2〉 − ũ]. (B13)
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In the steady state, we have 〈ã〉ss = 0, 〈ã†ã〉ss = ñ, and 〈ã2〉ss = ũ. Thus we can verify that the steady state is

ρss = 1

Z
exp[−β� Sâ†âS†], S = exp

[
−1

2
ζ ∗â2 + 1

2
ζ (â†)2

]
, ζ := λk

∣∣
ωk=�

. (B14)

Here S is a squeezing operator for the system, and we remark that the above ρss is in the interaction picture. When the single
boson is coupled with multiple squeezed baths, the generalization is straightforward, as shown in the main text.

3. Time correlation functions

From the above equations of 〈ã(t)〉, we obtain 〈ã(t)〉 = 〈ã(s)〉e− γ

2 (t−s) (t � s). According to the quantum regression theorem,
we know that the time correlation functions satisfy the following equations (t � s) [26,30]:

d

dt
〈ã†(t)ã(s)〉 = −γ

2
〈ã†(t)ã(s)〉, d

dt
〈ã(t)ã(s)〉 = −γ

2
〈ã(t)ã(s)〉. (B15)

Here 〈õ1(t)õ2(s)〉 are correlation functions in the rotating frame, defined by 〈õ1(t)õ2(s)〉 = tr[ô1 Et−s ô2 Esρ(0)] for t � s [26],
where ô1,2 are operators in the Schrödinger picture and Et is the evolution operator solved from the above master equation in
the interaction picture [Eq. (B12)], and ρ(t) = Et−sρ(s). Similarly, 〈ô1(t)ô2(s)〉 are correlation functions without adopting the
rotating frame, and we have

〈â†(t)â(s)〉 = 〈ã†(t)ã(s)〉ei�(t−s) = 〈ã†(s)ã(s)〉ei�(t−s)e− γ

2 (t−s),

〈â(t)â(s)〉 = 〈ã(t)ã(s)〉e−i�(t+s) = 〈ã2(s)〉e−2i�se−i�(t−s)e− γ

2 (t−s). (B16)

This can also be calculated using the Langevin equation ˙̂a = −i�â − 1
2γ â − ξ̂ (t) (here we only consider one single bath),

e.g.,

〈â†(t)â(s)〉 =
〈[

â†(s)e(i�− γ

2 )(t−s) −
∫ t

s

dt ′ e(i�− γ

2 )(t−t ′)ξ̂ †(t ′)
]
â(s)

〉

= 〈â†(s)â(s)〉e(i�− γ

2 )(t−s) −
∫ t

s

dt ′ e(i�− γ

2 )(t−t ′)
〈
ξ̂ †(t ′)

[
â(0)e(−i�− γ

2 )s −
∫ s

0
ds ′ e(−i�− γ

2 )(s−s ′)ξ̂ (s ′)
]〉

= 〈â†(s)â(s)〉e(i�− γ

2 )(t−s) +
∫ t

s

dt ′
∫ s

0
ds ′ e(i�− γ

2 )(t−t ′) e(−i�− γ

2 )(s−s ′)〈ξ̂ †(t ′)ξ̂ (s ′)〉.

Under the Markovian approximation, we have 〈ξ̂ †(t ′)ξ̂ (s ′)〉 ∼ δ(t ′ − s ′) [27,30]. In addition, notice that in the above double
integral we have 0 � s ′ � s � t ′ � t , thus the above integral gives zero.

4. Bath entropy change

Now we show the calculation for the second relation of Eq. (16) in the main text. Using the Heisenberg equation, we obtain

d

dt

∑
k

hk〈b̃2
αk(t)〉 + H.c. =

∑
k

−i2g∗
αkhk

[
〈â(t)b̂αk(0)〉eiωαkt − ig∗

αk

∫ t

0
ds eiωαk (t+s)〈â(t)â(s)〉

]
+ H.c. (B17)

The first term in the brackets is further calculated by substituting â(t) [Eq. (15)], and it gives

−
∑

k

2|gαk|2hk

∫ t

0
ds e−[i(�−ωαk )+ �

2 ](t−s)
〈
b̂2

αk(0)
〉 + H.c.

� 2
∫ ∞

0

dω

2π

∫ ∞

0
ds Jα(ω)h(ω)e−i(�−ω)s− 1

2 �s ũα(ω) + H.c.

= 2
∫ ∞

0

dω

2π
Jα(ω)

[
h(ω)ũα(ω)

�
2 + i(� − ω)

+ H.c.

]
� γα[h(�)ũα + H.c.]. (B18)

Here we applied the Markovian approximation and the weak-coupling limit � � �. The second term of Eq. (B17) can be
calculated with the help of the relation (quantum regression theorem)

〈â(t)â(s)〉 = 〈ã2(s)〉e−2i�se−i�(t−s)− �
2 (t−s) for t � s, (B19)
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and it leads to

−
∑

k

2(g∗
αk)2hke

2iωαk t

∫ t

0
ds e−iωαk (t−s)〈â(t)â(s)〉 + H.c.

� −2
∫

dω

2π
Kα(ω)h(ω)e2i(ω−�)t 〈ã2(t)〉

∫ ∞

0
ds e[i(�−ω)− �

2 ]s + H.c.

= −2〈ã2(t)〉
∫ ∞

0

dω

2π

[
Kα(ω)h(ω)e2i(ω−�)t

�
2 + i(ω − �)

+ H.c.

]
� −γα[h(�)〈ã2(t)〉 + H.c.]. (B20)

Thus, summing up Eqs. (B18) and (B20), we finish our calculation,

d

dt

∑
k

hk〈b̃2
αk(t)〉 + H.c. = −h(�)γα[〈ã2(t)〉 − ũα] + H.c. (B21)
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